Organic Analysis: Semi-Volatile Organic Compounds by GC/MS

Validation Package

Organic Analysis: Semi-Volatile Organic Compounds by GC/MS

Validation Package

Standards Data

QA/QC Results

Client: Project: **Battelle Memorial Institute** Novato Ballfields/G486063 Service Request: K2502554

Date Analyzed: 04/15/2005

Time Analyzed: 10:13

Tune Summary Semi-Volatile Organic Compounds by GC/MS

File ID:

J:\MS10\DATA\041505\0415T001.D

Analysis Method: 8270C

Analysis Lot: KWG0506208

Instrument ID:

MS10

Column:

Target Mass			Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail		
51	198	30	80	38.5	29825	PASS		
68	69	0	2	0.0	0	PASS		
69	198	0	100	45.4	35120	PASS		
70	69	0	2	1.3	457	PASS		
127	198	25	75	38.5	29832	PASS		
197	198	0	1	0.0	0	PASS		
198	198	100	100	100.0	77408	PASS		
199	198	5	9	6.7	5186	PASS		
275	198	10	30	26.0	20104	PASS		
365	198	1	100	4.4	3416	PASS		
441	443	0	100	86.1	10226	PASS		
442	198	198 40 110		83.6	64712	PASS		
443	442	15	24	18.3	11870	PASS		

		Date	Time	
Lab Code	File ID	Analyzed	Analyzed	Q
KWG0506208-2	J:\MS10\DATA\041505\0415F001.D	04/15/2005	10:13	
KWG0506208-2	J:\MS10\DATA\041505\0415F002.D	04/15/2005	11:01	
KWG0505755-7	J:\MS10\DATA\041505\0415F003.D	04/15/2005	11:41	
KWG0505755-5	J:\MS10\DATA\041505\0415F004.D	04/15/2005	12:22	
KWG0505755-6	J:\MS10\DATA\041505\0415F005.D	04/15/2005	13:01	
K2502554-001	J:\MS10\DATA\041505\0415F006.D	04/15/2005	13:40	
K2502499-011	J:\MS10\DATA\041505\0415F010.D	04/15/2005	16:22	
KWG0505755-1	J:\MS10\DATA\041505\0415F011.D	04/15/2005	17:01	
KWG0505755-2	J:\MS10\DATA\041505\0415F012.D	04/15/2005	17:41	
	KWG0506208-2 KWG0506208-2 KWG0505755-7 KWG0505755-5 KWG0505755-6 K2502554-001 K2502499-011 KWG0505755-1	KWG0506208-2 J:\MS10\DATA\041505\0415F001.D KWG0506208-2 J:\MS10\DATA\041505\0415F002.D KWG0505755-7 J:\MS10\DATA\041505\0415F003.D KWG0505755-5 J:\MS10\DATA\041505\0415F004.D KWG0505755-6 J:\MS10\DATA\041505\0415F006.D K2502554-001 J:\MS10\DATA\041505\0415F010.D K2502499-011 J:\MS10\DATA\041505\0415F011.D KWG0505755-1 J:\MS10\DATA\041505\0415F011.D	Lab Code File ID Analyzed KWG0506208-2 J:\MS10\DATA\041505\0415F001.D 04/15/2005 KWG0506208-2 J:\MS10\DATA\041505\0415F002.D 04/15/2005 KWG0505755-7 J:\MS10\DATA\041505\0415F003.D 04/15/2005 KWG0505755-5 J:\MS10\DATA\041505\0415F004.D 04/15/2005 KWG0505755-6 J:\MS10\DATA\041505\0415F005.D 04/15/2005 K2502554-001 J:\MS10\DATA\041505\0415F006.D 04/15/2005 K2502499-011 J:\MS10\DATA\041505\0415F010.D 04/15/2005 KWG0505755-1 J:\MS10\DATA\041505\0415F011.D 04/15/2005	Lab Code File ID Analyzed Analyzed KWG0506208-2 J:\MS10\DATA\041505\0415F001.D 04/15/2005 10:13 KWG0506208-2 J:\MS10\DATA\041505\0415F002.D 04/15/2005 11:01 KWG0505755-7 J:\MS10\DATA\041505\0415F003.D 04/15/2005 11:41 KWG0505755-5 J:\MS10\DATA\041505\0415F004.D 04/15/2005 12:22 KWG0505755-6 J:\MS10\DATA\041505\0415F006.D 04/15/2005 13:01 K2502554-001 J:\MS10\DATA\041505\0415F006.D 04/15/2005 13:40 K2502499-011 J:\MS10\DATA\041505\0415F010.D 04/15/2005 16:22 KWG0505755-1 J:\MS10\DATA\041505\0415F011.D 04/15/2005 17:01

Results flagged with an asterisk (*) indicate the analysis performed outside specified tune window

Printed: 04/19/2005 16:39:47

Form 5 - Organic

717

Page RR47223

1 of 1

Exception Report

Data File:

J:\MS10\DATA\041505\0415T001.D

Lab ID:

KWG0506208-1

RunType: Matrix:

TUNE SOLID Date Acquired: Date Quantitated:

04/15/2005 10:13

Batch ID:

KWG0506208

Analysis Method: MethodJoinID:

8270C MJ142

Sample Exceptions

Exception Categories	Result	Low Limit	High Limit	Pass	Fail
Tune Ion Ratio	NA	NA	NA	Х	

Primary Review:

Secondary Review: 4

Printed: 04/18/2005 15:32:06

u:\Stealth\Crystal.rpt\except2.rpt

Page 1 of 1

Quantitation Report

Bottle ID:

Prod Code:

8270-LL

Tier:

Collect Date:

Matrix:

SOLID

Receive Date:

Analysis Lot:

KWG0506208

Prep Lot:

Report Group:

04/18/2005

Analysis Method:

DFTPP

Prep Date:

Prep Method:

Prep Ref:

Quant Method: Title:

Tune Ref: MB Ref:

J:\MS10\METHODS\BNA\0412BNLL,M

Calibration ID: Report List ID: CAL4375 LJ1747

Method ID:

MJ190

Quant based on Report List

Data File:

J:\MS10\DATA\041505\0415T001.D

04/15/2005 10:13

Instrument:

MS10

Acqu Date:

Quant Date:

Vial:

Dilution:

1.0

Run Type: Lab ID:

TUNE

KWG0506208-1

Soln Conc. Units:

Tune Results

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance	Raw Abundance	Result Pass/Fail
51	198	30	80	38.5	29825	Pass
68	69	0	2	0.0	0	Pass
69	198	0	100	45.4	35120	Pass
70	69	0	2	1.3	457	Pass
127	198	25	75	38.5	29832	Pass
197	198	0	1	0.0	0	Pass
198	198	100	100	100.0	77408	Pass
199	198	5	9	6.7	5186	Pass
275	198	10	30	26.0	20104	Pass
365	198	0.75	100	4.4	3416	Pass
441	443	0.01	100	86.1	10226	Pass
442	2 198 40		. 110	83.6	64712	Pass
443	442	15	24	18.3	11870	Pass

U: Undetected at or above MDL

J: Analyte detected above MDL, but below MRL B: Hit above MRL also found in Method Blank

Analyte concentration above high point of ICAL

E: Analyte concentration above high po N: Presumptive evidence of compound

D: Result from dilution

m: Manual integration performed

d: Compound manually deleted NR: Analyte not reported from this analysis

^{*:} Result fails acceptance criteria

Result fails acceptance criteria
 H: Acceptance criteria not applicable
 Insufficient information to determine acceptance
 Result >= MRL, but MRL less than low point of ICAL
 c. check for co-elution

DFTPP

MS Integration Params: RTEINT.P

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Spectrum Information: Scan 1116

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass		Limit%	Limit%	Abn%	Abn	Pass/Fail
51 68 69 70 127 197 198	198 69 198 69 198 198	30 0.00 0.00 0.00 25 0.00 100	80 2 100 2 75 1	38.5 0.0 45.4 1.3 38.5 0.0	29825 0 35120 457 29832 0 77408	PASS PASS PASS PASS PASS PASS
199	198	5	9	6.7	5186	PASS PASS PASS PASS PASS PASS PASS
275	198	10	30	26.0	20104	
365	198	0.75	100	4.4	3416	
441	443	0.01	100	86.1	10226	
441	443	0.01	100	86.1	10226	
442	198	40	110	83.6	64712	
443	442	15	24	18.3	11870	

0415T001.D 0412BNLL.M

Mon Apr 18 10:16:08 2005

8270-LL @ 3/		n): 0415T0	01.D				
Modified:sub		LJ-ZJA					
m/z		m/z	abund.	m/z	abund.	m/z	abund.
36.00	65	49.90	10082	61.90	614	74.95	4807
36.90	275	50.95		62.95	1118	77.00	27205
37.95	631	52.00	1360	63.90	255	78.00	1656
38.95	2660	52.95	130	64.95	533		2990
39.90	159	54.05	160	65.90	142		2047
40.95	546	54.90	859	66.90	228		2406
42.05	145	55.90	1320		35120		762
43.00	452	56.95	2315	70.05	457	82.90	788
44.00	19	57.85	183		101	83.95	93
44.90	34	60.00	179	72.95	300		577
46.95	123	60.90	398	73.95	3703	85.90	1043
Scan 1116 (1	6.352 mir	n): 0415T0	01.D				
8270-LL @ 3/		19-29A					
Modified:sub							
m/z		m/z	abund.	m/z	abund.	m/z	abund.
86.95	426	99.90	285	112.90	170	126.95	29832
87.95	250	100.90	1351	115.00	50	128.00	2551
88.95	16	101.90	141	116.90	14933	128.90	15882
90.90	938	102.95	521	117.90	1019	129.90	1535
91.95	876	103.95	914	118.90	163	130.90	277
92.90	5888	104.95	790	120.05	119	131.90	129
94.00	471	106.95	9580	121.05	150	132.90	72
95.00	144	107.85	1375	121.85	821	133.90	450
96.05	178	109.95	17016	122.95	1248	134.90	1089
97.85	4736	111.00	2952	123.85	605		454
98.90	2618	111.90	411	124.95	587	136.95	728
Scan 1116 (1	6.352 Mlr	n): 0415T0	i())				
0270 11 0 2/			O •				
8270-LL @ 3/	6ppm SVM1		O 3.6. 4 3.0				
Modified:sub	6ppm SVM1 tracted	L9-29A		m / -	ahund	m / =	الم مددات
Modified:sub m/z	6ppm SVM1 tracted abund.	L9-29A m/z	abund.	m/z	abund.	m/z	abund.
Modified:sub m/z 137.85	6ppm SVM1 tracted abund. 254	m/z 150.90	abund. 335	161.95	376	173.95	861
Modified:sub m/z 137.85 140.85	6ppm SVM1 tracted abund. 254 2249	m/z 150.90 151.80	abund. 335 137	161.95 163.00	376 155	173.95 174.95	861 1488
Modified:sub m/z 137.85 140.85 141.95	6ppm SVM1 tracted abund. 254 2249 764	m/z 150.90 151.80 152.90	abund. 335 137 755	161.95 163.00 163.90	376 155 171	173.95 174.95 175.95	861 1488 658
Modified:sub m/z 137.85 140.85 141.95 142.85	6ppm SVM1 tracted abund. 254 2249 764 592	m/z 150.90 151.80 152.90 153.95	abund. 335 137 755 544	161.95 163.00 163.90 164.85	376 155 171 934	173.95 174.95 175.95 176.85	861 1488 658 936
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95	6ppm SVM1 tracted abund. 254 2249 764 592 156	m/z 150.90 151.80 152.90 153.95 154.95	abund. 335 137 755 544 1054	161.95 163.00 163.90 164.85 166.90	376 155 171 934 4763	173.95 174.95 175.95 176.85 178.85	861 1488 658 936 3998
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00	6ppm SVM1 tracted abund. 254 2249 764 592 156 107	m/z 150.90 151.80 152.90 153.95 154.95 155.95	abund. 335 137 755 544 1054 1499	161.95 163.00 163.90 164.85 166.90 167.90	376 155 171 934 4763 2543	173.95 174.95 175.95 176.85 178.85 179.90	861 1488 658 936 3998 2032
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508	m/z 150.90 151.80 152.90 153.95 154.95 155.95	abund. 335 137 755 544 1054 1499 316	161.95 163.00 163.90 164.85 166.90 167.90 168.90	376 155 171 934 4763 2543 334	173.95 174.95 175.95 176.85 178.85 179.90 180.90	861 1488 658 936 3998 2032 1001
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05	abund. 335 137 755 544 1054 1499 316 533	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90	376 155 171 934 4763 2543 334 233	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90	861 1488 658 936 3998 2032 1001 209
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85	abund. 335 137 755 544 1054 1499 316 533 329	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90 170.95	376 155 171 934 4763 2543 334 233 231	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60	861 1488 658 936 3998 2032 1001 209 104
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.90	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 158.85	abund. 335 137 755 544 1054 1499 316 533 329 615	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90 170.95 171.85	376 155 171 934 4763 2543 334 233 231 450	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80	861 1488 658 936 3998 2032 1001 209 104 361
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 158.85 159.85	abund. 335 137 755 544 1054 1499 316 533 329 615 819	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90 170.95	376 155 171 934 4763 2543 334 233 231	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60	861 1488 658 936 3998 2032 1001 209 104
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 159.85 160.85 1): 0415T0	abund. 335 137 755 544 1054 1499 316 533 329 615 819	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90 170.95 171.85	376 155 171 934 4763 2543 334 233 231 450	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80	861 1488 658 936 3998 2032 1001 209 104 361
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVM1	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 159.85 160.85 1): 0415T0	abund. 335 137 755 544 1054 1499 316 533 329 615 819	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90 170.95 171.85	376 155 171 934 4763 2543 334 233 231 450	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80	861 1488 658 936 3998 2032 1001 209 104 361
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 148.90 149.80 Scan 1116 (18270-LL @ 3/8	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVM1	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 159.85 160.85 1): 0415T0	abund. 335 137 755 544 1054 1499 316 533 329 615 819	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90 170.95 171.85	376 155 171 934 4763 2543 334 233 231 450	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80	861 1488 658 936 3998 2032 1001 209 104 361
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (18270-LL @ 3/Modified:sub	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVM1 tracted	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 159.85 160.85 1): 0415T0	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D	161.95 163.00 163.90 164.85 166.90 167.90 168.90 169.90 170.95 171.85 172.85	376 155 171 934 4763 2543 334 233 231 450 476	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90	861 1488 658 936 3998 2032 1001 209 104 361 1629
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (18270-LL @ 3/Modified:sub m/z 185.90 186.90	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVM1 tracted abund. 1118 3076	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85	376 155 171 934 4763 2543 334 233 231 450 476	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90	861 1488 658 936 3998 2032 1001 209 104 361 1629
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1 8270-LL @ 3/Modified:sub m/z 185.90 186.90 187.95	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVM1 tracted abund. 1118 3076 455	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 158.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80 201.40	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171
Modified: sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (18270-LL @ 3/Modified: subm/z 185.90 186.90 187.95 188.95	6ppm SVM1 tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVM1 tracted abund. 11118 3076 455 1042	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 158.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80 201.40 201.90	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400 191	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85 172.85	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405 6714	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75 230.90	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171 410
Modified: sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1 8270-LL @ 3/Modified: sub m/z 185.90 186.90 187.95 188.95 189.85	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVMI tracted abund. 11118 3076 455 1042 201	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.85 157.85 158.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80 201.40 201.90 202.90	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400 191 707	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85 172.85 214.90 216.90 217.80	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405 6714 806	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75 230.90 231.90	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171 410 136
Modified: sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1 8270-LL @ 3/Modified: sub m/z 185.90 186.90 187.95 188.95 189.85 190.85	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVMI tracted abund. 11118 3076 455 1042 201 446	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80 201.40 201.90 202.90 203.90	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400 191 707 3234	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85 172.85 219.85 219.85 219.85 219.85 219.80 216.90 217.80 218.90	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405 6714 806 132	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75 230.90 231.90 232.90	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171 410 136 112
Modified: sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1 8270-LL @ 3/Modified: sub m/z 185.90 186.90 187.95 188.95 189.85 190.85 191.85	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVMI tracted abund. 11118 3076 455 1042 201 446 1233	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 158.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80 201.40 201.90 202.90 203.90 204.95	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400 191 707 3234 5262	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85 172.85 219.85 219.85 219.85 219.85 219.80 216.90 217.80 218.90 220.90	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405 6714 806 132 3708	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75 230.90 231.90 232.90 233.90	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171 410 136 112 493
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1 8270-LL @ 3/Modified:sub m/z 185.90 186.90 187.95 188.95 189.85 190.85 191.85 192.95	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVMI tracted abund. 11118 3076 455 1042 201 446 1233 1170	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 158.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80 201.40 201.90 202.90 203.90 204.95 205.95	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400 191 707 3234 5262 19944	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85 172.85 209.85 210.85 214.90 216.90 217.80 218.90 220.90 222.95	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405 6714 806 132 3708 1462	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75 230.90 231.90 232.90 233.90 235.00	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171 410 136 112 493 359
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1 8270-LL @ 3/Modified:sub m/z 185.90 186.90 187.95 188.95 189.85 190.85 191.85 192.95 193.85	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVMI tracted abund. 11118 3076 455 1042 201 446 1233 1170 319	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.85 158.85 159.85 160.85 10.85 199.80 201.40 201.90 202.90 203.90 204.95 205.95 206.90	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400 191 707 3234 5262 19944 2658	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85 m/z 209.85 210.85 214.90 216.90 217.80 218.90 220.90 222.95 223.95	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405 6714 806 132 3708 1462 12021	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75 230.90 231.90 232.90 233.90 235.00 235.90	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171 410 136 112 493 359 291
Modified:sub m/z 137.85 140.85 141.95 142.85 143.95 145.00 145.90 147.10 147.90 148.90 149.80 Scan 1116 (1 8270-LL @ 3/Modified:sub m/z 185.90 186.90 187.95 188.95 189.85 190.85 191.85 192.95	6ppm SVMI tracted abund. 254 2249 764 592 156 107 508 1193 3292 611 173 6.352 mir 6ppm SVMI tracted abund. 11118 3076 455 1042 201 446 1233 1170	m/z 150.90 151.80 152.90 153.95 154.95 155.95 157.05 157.85 158.85 159.85 160.85 1): 0415T0 19-29A m/z 198.90 199.80 201.40 201.90 202.90 203.90 204.95 205.95	abund. 335 137 755 544 1054 1499 316 533 329 615 819 01.D abund. 5186 521 400 191 707 3234 5262 19944	161.95 163.00 163.90 164.85 166.90 167.90 168.90 170.95 171.85 172.85 172.85 209.85 210.85 214.90 216.90 217.80 218.90 220.90 222.95	376 155 171 934 4763 2543 334 233 231 450 476 abund. 350 1038 405 6714 806 132 3708 1462	173.95 174.95 175.95 176.85 178.85 179.90 180.90 181.90 182.60 183.80 184.90 m/z 227.75 228.85 229.75 230.90 231.90 232.90 233.90 235.00	861 1488 658 936 3998 2032 1001 209 104 361 1629 abund. 866 1024 171 410 136 112 493 359

Scan 1116 8270-LL @	3/6ppm SVMI		001.D				
Modified:s		/	- 17			,	1 7
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
239.75	161	252.80	270	271.80	156	292.05	120
240.85	315	254.90	44608	272.90	1478	292.85	346
241.85	752	255.90	6444	273.95	3904	293.95	171
243.95	9567	257.85	3490	274.95	20104	295.85	7326
244.95	1243	258.85	580	275.95	2544	296.85	978
245.85	2335	259.85	142	276.85	2112	301.10	103
246.85	435	263.75	162	277.85	325	301.90	149
247.80	133	264.90	1599	282.90	197	302.90	804
248.90	283	265.80	214	283.90	155	304.00	208
250.90	117	267.80	121	284.90	388	307.85	109
251.70	110	270.90	195	288.80	114	313.85	321
Scan 1116	(16.352 mir	n): 0415T(001.D				
8270-LL @ :	3/6ppm SVMI	19-29A					
Modified:s							
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
314.85	869	334.90	308	382.85	356	441.90	64712
315.85	366	340.90	203	389.80	137	442.90	11870
320.90	202	345.85	531	390.70	123	443.90	1182
321.90	145	351.90	491	401.90	413	444.85	104
322.90	2118	352.90	379	402.90	511		
323.90	344	353.90	550	403.90	200		
326.85	395	354.80	132	420.90	496		
327.95	237	364.85	3416	421.90	492		
331.85	185	365.75	476	422.90	3726		
332.95	256	371.90	1144	423.90	715		
333.90	1383	372.90	340	440.90	10226		

QA/QC Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063 **Service Request:** K2502554 **Calibration Date:** 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID:

CAL4375

Column: MS

Instrument ID:

MS10

Level ID	File ID	Level ID	File ID
A	J:\MS10\DATA\041205\0412F003.D	H	J:\MS10\DATA\041205\0412F010.D
В	J:\MS10\DATA\041205\0412F004.D	I	J:\MS10\DATA\041205\0412F011.D
C	J:\MS10\DATA\041205\0412F005.D	J	J:\MS10\DATA\041205\0412F012.D
D	J:\MS10\DATA\041205\0412F006.D	K	J:\MS10\DATA\041205\0412F013.D
E	J:\MS10\DATA\041205\0412F007.D	L	J:\MS10\DATA\041205\0412F014.D
F	J:\MS10\DATA\041205\0412F008.D	M	J:\MS10\DATA\041205\0412F015.D
G	J:\MS10\DATA\041205\0412F009.D	N	J:\MS10\DATA\041205\0412F016.D

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
1,2,4,5-Tetrachlorobenzene				!						1 1					
							1			I	100	0.729	J	200	0.704
	K	1000	0.740	L	2000	0.722	M	3000	0.746	N	5000	0.767			
Phenol	A	100	1.55	В	500	1.30	C	1000	1.29	D	2000	1.37	E	4000	1.39
	F	6000	1.32	G	8000	1.30	Н	10000	1.28						
Bis(2-chloroethyl) Ether	A	100	1.06	В	200	1.05	С	500	1.09	D	1000	1.18	Е	2000	1.14
	F	3000	1.12	G	4000	1.13	Н	5000	1.15	4					
2-Chlorophenol	A	100	1.18	В	500	1.05	С	1000	1.06	D	2000	1.14	Е	4000	1.11
	F	6000	1.12	G	8000	1.09	Н	10000	1.11						
2-Methylphenol	A	100	0.983	В	500	0.831	С	1000	0.820	D	2000	0.858	Е	4000	0.830
	F	6000	0.817	G	8000	0.803	Н	10000	0.817						
Bis(2-chloroisopropyl) Ether	A	100	2.28	В	200	2.19	С	500	2.10	D	1000	2.22	Е	2000	2.13
	F	3000	1.99	G	4000	1.94	Н	5000	1.90						
Acetophenone					~~~~~~~		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1			1		
										I	100	1.84	J	200	1.66
	K	1000	1.59	L	2000	1.57	M	3000	1.60	N	5000	1.56	<u> </u>		
4-Methylphenol	Α	100	1.35	В	500	1.21	C	1000	1.19	D	2000	1.26	Е	4000	1.23
	F	6000	1.22	G	8000	1.16	Н	10000	1.19	 					
				1			F t t			t t t					

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08

Form 6A - Organic

Page 1 of 9

SuperSet Reference:

RR47223

QA/QC Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063 **Service Request:** K2502554 **Calibration Date:** 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: Instrument ID:

CAL4375 MS10

Column: MS

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID		RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
N-Nitrosodi-n-propylamine	A	100	1.06	В	200	0.902	С	500	0.901	D	1000	0.902	Е	2000	0.920
	F	3000	0.890	G	4000	0.852	Н	5000	0.820	; ; ; ;			 		
Hexachloroethane	A	100	0.601	В	200	0.612	С	500	0.619	D	1000	0.636	Е	2000	0.642
	F	3000	0.649	G	4000	0.643	Н	5000	0.651						
Nitrobenzene	A	100	1.42	В	200	1.38	С	500	1.37	D	1000	1.43	Е	2000	1.46
	F	3000	1.40	G	4000	1.40	Н	5000	1.41						
Isophorone	A	100	0.581	В	200	0.588	С	500	0.620	D	1000	0.607	Е	2000	0.628
	F	3000	0.641	G	4000	0.633	Н	5000	0.638						
2-Nitrophenol	A	100	0.185	В	500	0.191	С	1000	0.187	D	2000	0.197	Е	4000	0.197
	F	6000	0.207	G	8000	0.206	Н	10000	0.207						
2,4-Dimethylphenol	A	100	0.275	В	500	0.259	С	1000	0.253	D	2000	0.273	Е	4000	0.263
	F	6000	0.274	G	8000	0.268	Н	10000	0.266				J		
Bis(2-chloroethoxy)methane	A	100	0.383	В	200	0.388	С	500	0.405	D	1000	0.414	Е	2000	0.421
	F	3000	0.428	G	4000	0.425	Н	5000	0.423						
2,4-Dichlorophenol	A	100	0.307	В	500	0.280	С	1000	0.278	D	2000	0.301	Е	4000	0.299
	F	6000	0.307	G	8000	0.309	Н	10000	0.303						
Naphthalene	A	100	0.916	В	200	0.930	С	500	0.987	D	1000	0.965	E	2000	0.986
	F	3000	1.02	G	4000	1.01	H	5000	1.01	1 1 1 2 2		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			·
4-Chloroaniline	A	100	0.391	В	200	0.429	C	500	0.445	D	1000	0.463	E	2000	0.494
	F	3000	0.494	G	4000	0.484	Н	5000	0.456						
Hexachlorobutadiene	A	100	0.225	В	200	0.229	С	500	0.246	D	1000	0.237	Е	2000	0.253
	F	3000	0.258	G	4000	0.258	Н	5000	0.256	1					
				-			1			1			f f		

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08 u:\Stealth\Crystal.rpt\Form6i15.rpt

Form 6A - Organic

 $\begin{array}{cccc} & & & & Page & 2 \ of & 9 \\ & & SuperSet \ Reference: & RR47223 & & & \end{array}$

724

QA/QC Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063 Service Request: K2502554

Calibration Date: 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: Instrument ID:

CAL4375

MS10

Column: MS

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
Caprolactam				1			1		*						
	********			; ; ;			i : : :			I	100	0.192	J	200	0.183
	K	1000	0.176	L	2000	0.183	М	3000	0.194	N	5000	0.192	1		
Benzaldehyde							(((1						: : : : :		
										I	100	0.921	J	200	0.862
	K	1000	0.895	L	2000	0.933	M	3000	0.919	N	5000	0.929	1		
4-Chloro-3-methylphenol	A	100	0.296	В	500	0.271	С	1000	0.272	D	2000	0.284	Е	4000	0.28
	F	6000	0.300	G	8000	0.290	Н	10000	0.295				1 1 1 1 1		
2-Methylnaphthalene	A	100	0.523	В	200	0.557	C	500	0.553	D	1000	0.551	E	2000	0.59
	F		0.616	G	4000	0.603	Н	5000	0.588						
Hexachlorocyclopentadiene							С	500	0.237	D	1000	0.309	E	2000	0.34
riexaomorocycropentatione	F	3000	0.361	G	4000	0.369	Н		0.381						
		100	0.000					4000	0.000		•	0.410		4000	0.40
2,4,6-Trichlorophenol	A		0.393	В		0.373	С		0.388	D	2000	0.413	Е	4000	0.40
	F	6000	0.414	G	8000	0.406	H	10000	0.420	1					
2,4,5-Trichlorophenol	A	100	0.432	В	500	0.403	С	1000	0.428	D	2000	0.445	E	4000	0.44
	F	6000	0.451	G	8000	0.434	Н	10000	0.439	J					
Biphenyl							1						f f t t		
				ļ 						I	100	1.46	J	200	1.37
	K	1000	1.48	L	2000	1.47	M	3000	1.49	N	5000	1.51			
2-Chloronaphthalene	A	100	0.493	В	200	0.485	C	500	0.516	D	1000	0.525	Е	2000	0.54
	F	3000	0.557	G	4000	0.531	Н	5000	0.554						
2-Nitroaniline	A	100	0.450	В	200	0.453	С	500	0.487	D	1000	0.501	Е	2000	0.50
	F	3000	0.516	G	4000	0.497	Н	5000	0.505				,		
Dimethyl Phthalate	A	100	1.35	В	200	1.34	С	500	1.41	D	1000	1.46	Е	2000	1.46
	F	3000	1.47	G	4000	1.44	Н	5000	1.48						

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08 $u:\Stealth\Crystal.rpt\Form6i15.rpt$

Form 6A - Organic

Page 3 of 9 SuperSet Reference: RR47223

725

QA/QC Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Service Request: K2502554 Calibration Date: 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: **Instrument ID:**

CAL4375

MS10

Column: MS

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
2,6-Dinitrotoluene	A	100	0.321	В	200	0.324	С	500	0.350	D	1000	0.354	E	2000	0.349
	F	3000	0.355	G	4000	0.364	Н	5000	0.355						
Acenaphthylene	A	100	1.64	В	200	1.69	С	500	1.77	D	1000	1.76	Е	2000	1.79
	F	3000	1.84	G	4000	1.79	Н	5000	1.85	 					
3-Nitroaniline	A	100	0.280	В	200	0.316	С	500	0.338	D	1000	0.358	Е	2000	0.363
	F	3000	0.361	G	4000	0.357	Н	5000	0.355				· · · · · · · · · · · · · · · · · · ·		
Acenaphthene	A	100	0.989	В	200	0.980	С	500	1.04	D	1000	1.05	E	2000	1.07
	F	3000	1.06	G	4000	1.06	Н	5000	1.06						
2,4-Dinitrophenol							С	1000	0.0535	D	2000	0.113	E	4000	0.146
	F	6000	0.176	G	8000	0.176	Н	10000	0.194						
4-Nitrophenol				В	500	0.135	С	1000	0.156	D	2000	0.195	E	4000	0.204
	F	6000	0.226	G	8000	0.227	Н	10000	0.240				J		
 Dibenzofuran	A	100	1.69	В	200	1.64	С	500	1.67	D	1000	1.76	E	2000	1.77
	F	3000	1.78	G	4000	1.78	Н	5000	1.78						
2,4-Dinitrotoluene	A	100	0.345	В	200	0.402	С	500	0.409	D	1000	0.448	E	2000	0.451
	F	3000	0.469	G	4000	0.467	Н	5000	0.466					,	
Diethyl Phthalate	A	100	1.41	В	200	1.24	С	500	1.29	D	1000	1.35	E	2000	1.34
	F	3000	1.39	G	4000	1.35	Н	5000	1.38						
Fluorene	A	100	1.16	В	200	1.11	С	500	1.21	D	1000	1.27	Е	2000	1.28
	F	3000	1.29	G	4000	1.26	Н	5000	1.30						
4-Chlorophenyl Phenyl Ether	A	100	0.630	В	200	0.590	С	500	0.647	D	1000	0.656	Е	2000	0.656
	F	3000	0.675	G	4000	0.657	Н	5000	0.676				1		

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08 u:\Stealth\Crystal.rpt\Form6i15.rpt

Form 6A - Organic

Page 4 of

726

RR47223

SuperSet Reference:

QA/QC Results

Client: Project: **Battelle Memorial Institute** Novato Ballfields/G486063

Service Request: K2502554 Calibration Date: 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: **Instrument ID:**

CAL4375

MS10

Column: MS

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
4-Nitroaniline	A	100	0.257	В	200	0.311	С	500	0.321	D	1000	0.343	Е	2000	0.350
	F	3000	0.351	G	4000	0.363	Н	5000	0.366						
2-Methyl-4,6-dinitrophenol				1			С	1000	0.181	D	2000	0.232	Е	4000	0.246
	F	6000	0.266	G	8000	0.254	Н	10000	0.272	; ; ;					
N-Nitrosodiphenylamine	Α	100	0.773	В	200	0.806	С	500	0.799	D	1000	0.866	Е	2000	0.857
	F	3000	0.886	G	4000	0.841	Н	5000	0.896				} ; ; ; ; ; ;		
4-Bromophenyl Phenyl Ether	A	100	0.211	В	200	0.218	C	500	0.228	D	1000	0.230	Е	2000	0.246
	F	3000	0.241	G	4000	0.237	H	5000	0.248						
Hexachlorobenzene	A	100	0.235	В	200	0.246	С	500	0.256	D	1000	0.254	Е	2000	0.273
	F	3000	0.267	G	4000	0.275	Н	5000	0.274				 		
Atrazine							1						f f f f f f f f f f f f f f f f f f f		
	 К	1000	0.240	L	2000	0.243	М	3000	0.239	I N		0.247	J	200	0.240
Pentachlorophenol	**	1000	0.2.10	; 15	2000	0.2 13	C		0.0611	D		0.0886	E	4000	0.112
	F	6000	0.121	G	8000	0.126	Н	10000	0.134	1					
Phenanthrene	A	100	1.12	В	200	1.11	С	500	1.10	D	1000	1.17	Е	2000	1.20
	F	3000	1.19	G	4000	1.21	Н	5000	1.21				 		
Anthracene	A	100	1.10	В	200	1.10	C	500	1.14	D	1000	1.16	E	2000	1.19
	F	3000	1.21	G	4000	1.23	Н	5000	1.21				1		
Carbazole	A	100	1.02	В	200	0.998	С	500	0.994	D	1000	1.07	Е	2000	1.10
	F	3000	1.09	G	4000	1.12	Н	5000	1.09				1		
Di-n-butyl Phthalate	A	100	1.46	В	200	1.29	С	500	1.33	D	1000	1.36	Е	2000	1.43
	F	3000	1.42	G	4000	1.45	Н	5000	1.41						

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

727

Printed: 04/19/2005 16:42:08

Form 6A - Organic

Page

5 of 9

SuperSet Reference: RR47223

QA/QC Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063 **Service Request:** K2502554 **Calibration Date:** 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: Instrument ID:

CAL4375

MS10

Column: MS

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
Fluoranthene	A	100	1.18	В	200	1.15	С	500	1.19	D	1000	1.19	Е	2000	1.27
	F	3000	1.23	G	4000	1.26	Н	5000	1.26						
Pyrene	A	100	1.55	В	200	1.52	С	500	1.50	D	1000	1.57	Е	2000	1.61
	F	3000	1.57	G	4000	1.63	Н	5000	1.47				! ! ! !		
Butyl Benzyl Phthalate	A	100	0.735	В	200	0.719	С	500	0.723	D	1000	0.747	Е	2000	0.763
	F	3000	0.768	G	4000	0.773	Н	5000	0.731				1		
3,3'-Dichlorobenzidine	A	100	0.488	В	500	0.471	С	1000	0.462	D	2000	0.470	Е	4000	0.480
	F	6000	0.479	G	8000	0.478	Н	10000	0.465				1 1 1 1		
Benz(a)anthracene	A	100	1.26	В	200	1.24	С	500	1.27	D	1000	1.31	E	2000	1.33
	F	3000	1.34	G	4000	1.35	Н	5000	1.31						
Chrysene	A	100	1.17	В	200	1.14	С	500	1.12	D	1000	1.18	E	2000	1.20
	F	3000	1.18	G	4000	1.18	Н	5000	1.14						
Bis(2-ethylhexyl) Phthalate	A	100	1.01	В	200	0.916	С	500	0.892	D	1000	0.972	Е	2000	0.994
	F	3000	0.996	G	4000	0.976	Н	5000	0.947				 		
Di-n-octyl Phthalate	A	100	1.97	В	200	1.93	С	500	2.02	D	1000	1.95	E	2000	2.08
	F	3000	2.11	G	4000	2.08	Н	5000	2.14						
Benzo(b)fluoranthene	A	100	1.37	В	200	1.39	С	500	1.40	D	1000	1.36	Е	2000	1.44
	F	3000	1.47	G	4000	1.42	Н	5000	1.46						
Benzo(k)fluoranthene	A	100	1.37	В	200	1.33	С	500	1.40	D	1000	1.39	Е	2000	1.43
	F	3000	1.40	G	4000	1.47	Н	5000	1.50						
Benzo(a)pyrene	A	100	1.34	В	200	1.28	C	500	1.33	D	1000	1.34	Е	2000	1.43
	F	3000	1.42	G	4000	1.42	Н	5000	1.43						

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08 u:\Stealth\Crystal.rpt\Form6i15.rpt

Form 6A - Organic

Page 6 of 9

SuperSet Reference: RR47223

QA/QC Results

Client: Project: **Battelle Memorial Institute** Novato Ballfields/G486063

Service Request: K2502554 Calibration Date: 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: Instrument ID:

CAL4375

MS10

Column: MS

Analyte Name	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF	Level ID	Amt	RRF
Indeno(1,2,3-cd)pyrene	A	100	1.14	В	200	1.06	С	500	1.14	D	1000	1.17	Е	2000	1.21
	F	3000	1.18	G	4000	1.21	Н	5000	1.22	 			 		
Dibenz(a,h)anthracene	A	100	1.04	В	200	1.03	С	500	1.11	D	1000	1.12	Е	2000	1.18
	F	3000	1.22	G	4000	1.19	Н	5000	1.22	1 1 1 1 2 4 4 1			1 1 1 1 1 1		
Benzo(g,h,i)perylene	A	100	1.13	В	200	1.09	С	500	1.18	D	1000	1.18	Е	2000	1.22
	F	3000	1.23	G	4000	1.22	Н	5000	1.21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
2-Fluorophenol	A	100	0.971	В	200	1.02	С	500	1.11	D	1000	1.14	Е	2000	1.15
	F	3000	1.13	G	4000	1.13	Н	5000	1.14	ļ 			 		
Phenol-d6	A	100	1.14	В	200	1.25	С	500	1.35	D	1000	1.38	Е	2000	1.43
	F	3000	1.35	G	4000	1.38	Н	5000	1.36				! ! !		
Nitrobenzene-d5	A	100	1.24	В	200	1.24	С	500	1.34	D	1000	1.37	Е	2000	1.41
	F	3000	1.36	G	4000	1.38	Н	5000	1.37				; ; ; ; ; ;		
2-Fluorobiphenyl	A	100	1.25	В	200	1.24	С	500	1.30	D	1000	1.32	E	2000	1.28
	F	3000	1.35	G	4000	1.32	Н	5000	1.33						
2,4,6-Tribromophenol	A	100	0.0947	В	200	0.100	С	500	0.110	D	1000	0.123	E	2000	0.134
	F	3000	0.132	G	4000	0.136	Н	5000	0.142				 		
Terphenyl-d14	A	100	0.886	В	200	0.898	С	500	0.899	D	1000	0.934	Е	2000	0.946
	F	3000	0.941	G	4000	0.948	Н	5000	0.925) 		
1,4-Dichlorobenzene	A	100	1.31	В	200	1.36	С	500	1.36	D	1000	1.44	Е	2000	1.46
	F	3000	1.44	G	4000	1.49	Н	5000	1.43	1					

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08 $u:\Stealth\Crystal.rpt\Form6i15.rpt$

Form 6A - Organic

Page 7 of 9 RR47223

SuperSet Reference:

729

QA/QC Results

Client: Project: **Battelle Memorial Institute** Novato Ballfields/G486063

Service Request: K2502554 Calibration Date: 04/12/2005

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID:

CAL4375

Column: MS

	DALES AND A COMMITTAL COMPANY OF THE		Calibratio	n Evaluat	ion		RRF	Evalı	ıation
Analyte Name	Compound Type	Fit Type	Eval.	Eval. Result	Q	Control Criteria	Average RRF	Q	Minimum RRF
1,2,4,5-Tetrachlorobenzene	TRG	AverageRF	% RSD	2.9		≤ 15	0.735		0.01
‡ Phenol	MS	AverageRF	% RSD	6.6		≤ 15	1.35		0.01
Bis(2-chloroethyl) Ether	TRG	AverageRF	% RSD	3.9		≤ 15	1.12		0.01
2-Chlorophenol	MS	AverageRF	% RSD	3.7		≤ 15	1.11		0.01
2-Methylphenol	TRG	AverageRF	% RSD	6.9		≤ 15	0.845		0.01
Bis(2-chloroisopropyl) Ether	TRG	AverageRF	% RSD	6.6		≤ 15	2.09		0.01
Acetophenone	TRG	AverageRF	% RSD	6.5		≤ 15	1.64		0.01
4-Methylphenol	TRG	AverageRF	% RSD	4.8		≤ 15	1.23		0.01
† N-Nitrosodi-n-propylamine	MS	AverageRF	% RSD	7.6		≤ 15	0.906		0.05
Hexachloroethane	TRG	AverageRF	% RSD	2.9		≤ 15	0.632		0.01
Nitrobenzene	TRG	AverageRF	% RSD	2.0		≤ 15	1.41		0.01
Isophorone	TRG	AverageRF	% RSD	3.7		≤ 15	0.617		0.01
‡ 2-Nitrophenol	TRG	AverageRF	% RSD	4.6		≤ 15	0.197		0.01
2,4-Dimethylphenol	TRG	AverageRF	% RSD	3.0		≤ 15	0.266		0.01
Bis(2-chloroethoxy)methane	TRG	AverageRF	% RSD	4.2		≤ 15	0.411		0.01
‡ 2,4-Dichlorophenol	TRG	AverageRF	% RSD	4.1		≤ 15	0.298		0.01
Naphthalene	TRG	AverageRF	% RSD	3.9		≤ 15	0.978		0.01
4-Chloroaniline	TRG	AverageRF	% RSD	7.8		≤ 15	0.457		0.01
‡ Hexachlorobutadiene	TRG	AverageRF	% RSD	5.5		≤ 15	0.245		0.01
Caprolactam	TRG	AverageRF	% RSD	3.8		≤ 15	0.187		0.01
Benzaldehyde	TRG	AverageRF	% RSD	3.0		≤ 15	0.910		0.01
‡ 4-Chloro-3-methylphenol	MS	AverageRF	% RSD	3.8		≤ 15	0.286		0.01
2-Methylnaphthalene	TRG	AverageRF	% RSD	5.6		≤ 15	0.573		0.01
† Hexachlorocyclopentadiene	TRG	AverageRF	% RSD	16.0	*	≤ 15	0.333		0.05
‡ 2,4,6-Trichlorophenol	TRG	AverageRF	% RSD	3.9		≤ 15	0.402		0.01
2,4,5-Trichlorophenol	TRG	AverageRF	% RSD	3.4		≤ 15	0.434		0.01
Biphenyl	TRG	AverageRF	% RSD	3.3		≤ 15	1.46		0.01
2-Chloronaphthalene	TRG	AverageRF	% RSD	5.0		≤ 15	0.525		0.01
2-Nitroaniline	TRG	AverageRF	% RSD	5.1		≤ 15	0.490		0.01
Dimethyl Phthalate	TRG	AverageRF	% RSD	3.9		≤ 15	1.43		0.01
2,6-Dinitrotoluene	TRG	AverageRF	% RSD	4.4		≤ 15	0.346		0.01
Acenaphthylene	TRG	AverageRF	% RSD	4.0		≤ 15	1.77		0.01
3-Nitroaniline	TRG	AverageRF	% RSD	8.6		≤ 15	0.341		0.01
‡ Acenaphthene	MS	AverageRF	% RSD	3.4		≤ 15	1.04		0.01
† 2,4-Dinitrophenol	TRG	Quadratic	COD	0.998		≥0.990	0.143		0.05
† 4-Nitrophenol	MS	AverageRF	% RSD	19.8	*	≤ 15	0.198		0.05
Dibenzofuran	TRG	AverageRF	% RSD	3.3		≤ 15	1.73		0.01
2,4-Dinitrotoluene	MS	AverageRF	% RSD	10.1		≤ 15	0.432		0.01
Diethyl Phthalate	TRG	AverageRF	% RSD	4.1		≤ 15	1.34		0.01
Fluorene	TRG	AverageRF	% RSD	5.6		≤ 15	1.23		0.01
4-Chlorophenyl Phenyl Ether	TRG	AverageRF	% RSD	4.3		13≤ 15	0.648		0.01
4-Nitroaniline	TRG	AverageRF	% RSD	10.8		≤ 15	0.333		0.01

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08 $u:\Stealth\Crystal.rpt\Form6il5.rpt$

Form 6A - Organic

Page 8 of 9

SuperSet Reference:

QA/QC Results

Client:

Battelle Memorial Institute

Service Request: K2502554 Calibration Date: 04/12/2005

Project:

Novato Ballfields/G486063

Initial Calibration Summary Semi-Volatile Organic Compounds by GC/MS

Calibration ID: **Instrument ID:**

CAL4375

MS10

Column: MS

				RRF	Evalu	ıation			
Analyte Name	Compound Type	Fit Type	Eval.	Eval. Result	Q	Control Criteria	Average RRF	Q	Minimum RRF
2-Methyl-4,6-dinitrophenol	TRG	AverageRF	% RSD	13.6		≤ 15	0.242		0.01
‡ N-Nitrosodiphenylamine	TRG	AverageRF	% RSD	5.2		≤ 15	0.841		0.01
4-Bromophenyl Phenyl Ether	TRG	AverageRF	% RSD	5.7		≤ 15	0.233		0.01
Hexachlorobenzene	TRG	AverageRF	% RSD	5.7		≤ 15	0.260		0.01
Atrazine	TRG	AverageRF	% RSD	1.3		≤ 15	0.242		0.01
‡ Pentachlorophenol	MS	AverageRF	% RSD	25.5	*	≤ 15	0.107		0.01
Phenanthrene	TRG	AverageRF	% RSD	4.1		≤ 15	1.16		0.01
Anthracene	TRG	AverageRF	% RSD	4.2		≤ 15	1.17		0.01
Carbazole	TRG	AverageRF	% RSD	4.6		≤ 15	1.06		0.01
Di-n-butyl Phthalate	TRG	AverageRF	% RSD	4.5		≤ 15	1.39		0.01
‡ Fluoranthene	TRG	AverageRF	% RSD	3.7		≤ 15	1.22		0.01
Pyrene	MS	AverageRF	% RSD	3.5		≤ 15	1.55		0.01
Butyl Benzyl Phthalate	TRG	AverageRF	% RSD	2.8		≤ 15	0.745		0.01
3,3'-Dichlorobenzidine	TRG	AverageRF	% RSD	1.8		≤ 15	0.474		0.01
Benz(a)anthracene	TRG	AverageRF	% RSD	3.1		≤ 15	1.30		0.01
Chrysene	TRG	AverageRF	% RSD	2.3		≤ 15	1.16		0.01
Bis(2-ethylhexyl) Phthalate	TRG	AverageRF	% RSD	4.4		≤ 15	0.964		0.01
‡ Di-n-octyl Phthalate	TRG	AverageRF	% RSD	3.9		≤ 15	2.03		0.01
Benzo(b)fluoranthene	TRG	AverageRF	% RSD	3.0		≤ 15	1.41		0.01
Benzo(k)fluoranthene	TRG	AverageRF	% RSD	3.8		≤ 15	1.41		0.01
‡ Benzo(a)pyrene	TRG	AverageRF	% RSD	4.2		≤ 15	1.37		0.01
Indeno(1,2,3-cd)pyrene	TRG	AverageRF	% RSD	4.6		≤ 15	1.17		0.01
Dibenz(a,h)anthracene	TRG	AverageRF	% RSD	6.6		≤ 15	1.14		0.01
Benzo(g,h,i)perylene	TRG	AverageRF	% RSD	4.2		≤ 15	1.18		0.01
2-Fluorophenol	SURR	AverageRF	% RSD	6.1		≤ 15	1.10		0.01
Phenol-d6	SURR	AverageRF	% RSD	6.9		≤ 15	1.33		0.01
Nitrobenzene-d5	SURR	AverageRF	% RSD	4.7		≤ 15	1.34		0.01
2-Fluorobiphenyl	SURR	AverageRF	% RSD	2.8		≤ 15	1.30		0.01
2,4,6-Tribromophenol	SURR	AverageRF	% RSD	14.5		≤ 15	0.122		0.01
Terphenyl-d14	SURR	AverageRF	% RSD	2.6		≤ 15	0.922		0.01
‡ 1,4-Dichlorobenzene	MS	AverageRF	% RSD	4.4		≤ 15	1.41		0.01

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 04/19/2005 16:42:08 u:\Stealth\Crystal.rpt\Form6il5.rpt

Form 6A - Organic 731

9 of 9

Page

QA/QC Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Service Request: K2502554 Calibration Date: 04/12/2005

Date Analyzed: 04/12/2005

Second Source Calibration Verification Semi-Volatile Organic Compounds by GC/MS

Calibration Type:

Internal Standard

Calibration ID: CAL4375

Analysis Method:

8270C

Units: ng/ml

File ID:

J:\MS10\DATA\041205\0412F017.D J:\MS10\DATA\041205\0412F018.D

Analyte Name	Expected	Result	Average RF	SSV RF	%D	%Drift	Criteria	Curve Fit
1,2,4,5-Tetrachlorobenzene	3000	3600	0.735	0.878	20	NA	± 30 %	AverageRF
‡ Phenol	3000	3500	1.35	1.56	16	NA	± 20 %	AverageRF
Bis(2-chloroethyl) Ether	3000	3000	1.12	1.12	0	NA	± 30 %	AverageRF
2-Chlorophenol	3000	3300	1.11	1.22	10	NA	\pm 30 %	AverageRF
2-Methylphenol	3000	3300	0.845	0.936	11	NA	± 30 %	AverageRF
Bis(2-chloroisopropyl) Ether	3000	3000	2.09	2.11	1	NA	± 30 %	AverageRF
Acetophenone	3000	3500	1.64	1.91	17	NA	± 30 %	AverageRF
4-Methylphenol	3000	3300	1.23	1.35	10	NA	± 30 %	AverageRF
† N-Nitrosodi-n-propylamine	3000	3100	0.906	0.922	2	NA	± 30 %	AverageRF
Hexachloroethane	3000	3100	0.632	0.655	4	NA	± 30 %	AverageRF
Nitrobenzene	3000	3000	1.41	1.42	1	NA	± 30 %	AverageRF
Isophorone	3000	3600	0.617	0.734	19	NA	± 30 %	AverageRF
[‡] 2-Nitrophenol	3000	3400	0.197	0.226	15	NA	\pm 20 %	AverageRF
2,4-Dimethylphenol	3000	3300	0.266	0.290	9	NA	± 30 %	AverageRF
Bis(2-chloroethoxy)methane	3000	3000	0.411	0.413	1	NA	± 30 %	AverageRF
[‡] 2,4-Dichlorophenol	3000	3300	0.298	0.329	10	NA	± 20 %	AverageRF
Naphthalene	3000	3200	0.978	1.03	5	NA	\pm 30 %	AverageRF
4-Chloroaniline	3000	3000	0.457	0.451	-1	NA	\pm 30 %	AverageRF
‡ Hexachlorobutadiene	3000	3100	0.245	0.253	3	NA	± 20 %	AverageRF
Caprolactam	3000	3600	0.187	0.224	20	NA	± 30 %	AverageRF
Benzaldehyde	3000	3500	0.910	1.06	16	NA	± 30 %	AverageRF
‡ 4-Chloro-3-methylphenol	3000	3400	0.286	0.327	14	NA	± 20 %	AverageRF
2-Methylnaphthalene	3000	3000	0.573	0.565	-1	NA	± 30 %	AverageRF
† Hexachlorocyclopentadiene	3000	3700	0.333	0.406	22	NA	± 30 %	AverageRF
‡ 2,4,6-Trichlorophenol	3000	3400	0.402	0.455	13	NA	± 20 %	AverageRF
2,4,5-Trichlorophenol	3000	3400	0.434	0.498	15	NA	± 30 %	AverageRF
Biphenyl	3000	3700	1.46	1.81	23	NA	\pm 30 %	AverageRF
2-Chloronaphthalene	3000	2800	0.525	0.483	-8	NA	± 30 %	AverageRF
2-Nitroaniline	3000	3100	0.490	0.503	3	NA	± 30 %	AverageRF
Dimethyl Phthalate	3000	3100	1.43	1.47	3	NA	± 30 %	AverageRF
2,6-Dinitrotoluene	3000	3200	0.346	0.367	6	NA	± 30 %	AverageRF
Acenaphthylene	3000	3300	1.77	1.93	9	NA	\pm 30 %	AverageRF
3-Nitroaniline	3000	3300	0.341	0.372	9	NA	± 30 %	AverageRF
‡ Acenaphthene	3000	3100	1.04	1.08	4	NA	± 20 %	AverageRF
† 2,4-Dinitrophenol	3000	3100	0.143	0.144	NA	4	± 30 %	Quadratic
† 4-Nitrophenol	3000	3400	0.198	0.227	15	NA	± 30 %	AverageRF
Dibenzofuran	3000	3100	1.73	1.79	3	NA	± 30 %	AverageRF
2,4-Dinitrotoluene	3000	3400	0.432	0.485	12	NA	± 30 %	AverageRF
Diethyl Phthalate	3000	3100	1.34	1.39	4	NA	± 30 %	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 4/19/2005 16:42:17

u:\Stealth\Crystal.rpt\Form6SS.rpt

Form 6B - Organic

Page 1 of 2

SuperSet Reference:

QA/QC Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Service Request: K2502554 Calibration Date: 04/12/2005 **Date Analyzed:** 04/12/2005

Second Source Calibration Verification Semi-Volatile Organic Compounds by GC/MS

Calibration Type: Analysis Method:

Internal Standard

8270C

Calibration ID: CAL4375

Units: ng/ml

Analyte Name	Expected	Result	Average RF	SSV RF	%D	%Drift	Criteria	Curve Fit
Fluorene	3000	3100	1.23	1.28	4	NA	± 30 %	AverageRF
4-Chlorophenyl Phenyl Ether	3000	3200	0.648	0.683	5	NA	± 30 %	AverageRF
4-Nitroaniline	3000	3200	0.333	0.350	5	NA	± 30 %	AverageRF
2-Methyl-4,6-dinitrophenol	3000	3200	0.242	0.255	6	NA	± 30 %	AverageRF
‡ N-Nitrosodiphenylamine	3000	3500	0.841	0.972	16	NA	± 20 %	AverageRF
4-Bromophenyl Phenyl Ether	3000	3000	0.233	0.235	1	NA	± 30 %	AverageRF
Hexachlorobenzene	3000	3100	0.260	0.272	5	NA	± 30 %	AverageRF
Atrazine	3000	3400	0.242	0.276	14	NA	± 30 %	AverageRF
‡ Pentachlorophenol	3000	3200	0.107	0.115	7	NA	± 20 %	AverageRF
Phenanthrene	3000	3000	1.16	1.15	-1	NA	± 30 %	AverageRF
Anthracene	3000	3100	1.17	1.19	2	NA	± 30 %	AverageRF
Carbazole	3000	3000	1.06	1.06	0	NA	± 30 %	AverageRF
Di-n-butyl Phthalate	3000	3100	1.39	1.42	2	NA	± 30 %	AverageRF
‡ Fluoranthene	3000	3000	1.22	1.21	-1	NA	± 30 %	AverageRF
Pyrene	3000	3000	1.55	1.54	-1	NA	± 30 %	AverageRF
Butyl Benzyl Phthalate	3000	3000	0.745	0.736	-1	NA	± 30 %	AverageRF
3,3'-Dichlorobenzidine	3000	3400	0.474	0.543	15	NA	\pm 30 %	AverageRF
Benz(a)anthracene	3000	3100	1.30	1.36	5	NA	\pm 30 %	AverageRF
Chrysene	3000	3100	1.16	1.19	2	NA	± 30 %	AverageRF
Bis(2-ethylhexyl) Phthalate	3000	3100	0.964	0.981	2	NA	\pm 30 %	AverageRF
‡ Di-n-octyl Phthalate	3000	3000	2.03	2.03	0	NA	\pm 20 %	AverageRF
Benzo(b)fluoranthene	3000	3100	1.41	1.47	4	NA	± 30 %	AverageRF
Benzo(k)fluoranthene	3000	3000	1.41	1.43	1	NA	\pm 30 %	AverageRF
‡ Benzo(a)pyrene	3000	3000	1.37	1.37	0	NA	± 20 %	AverageRF
Indeno(1,2,3-cd)pyrene	3000	3100	1.17	1.20	3	NA	± 30 %	AverageRF
Dibenz(a,h)anthracene	3000	3100	1.14	1.17	3	NA	± 30 %	AverageRF
Benzo(g,h,i)perylene	3000	3100	1.18	1.21	2	NA	± 30 %	AverageRF
‡ 1,4-Dichlorobenzene	3000	3100	1.41	1.44	2	NA	± 20 %	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 4/19/2005 16:42:17 u:\Stealth\Crystal.rpt\Form6SS.rpt

Form 6B - Organic

Page 2 of 2

SuperSet Reference:

Injection Log

Directory: J:\MS10\DATA\041205

	•					
Line	Vial	FileName	Multiplier	SampleName	Misc Info	Injected
1	1	0412F001.D	1.	KWG0505864-1 TUNE SVM19-28E	SVM\W0505864\1-TUNE.H	12 Apr 2005 10:41
2	2	0412F002.D	1.	KWG0505864-2 IB 8270-LL	SVM\W0505864\2-IB.H	12 Apr 2005 10:4!
3	3	0412F003.D	1.	8270LL @ 0.1ppm SVM19-15D KWG0		12 Apr 2005 11:2
					SVM\W0505864\3-ICAL.H	12 Apr 2005 12:06
4	4	0412F004.D	1.	8270LL @ 0.2/0.5ppm SVM19-15E KW	/G05 SVM\W0505864\4-ICAL.H	
5	5	0412F005.D	1.	8270LL @ 0.5/1.0ppm SVM19-15F KW	/G05	12 Apr 2005 12:46
					SVM\W0505864\5-ICAL.H	12 Apr 2005 13:2(
6	6	0412F006.D	1.	8270LL @ 1.0/2.0ppm SVM19-15G KV		12 Apr 2005 15.20
oug.		04405007.5	4		SVM\W0505864\6-ICAL.H	12 Apr 2005 14:0!
7	7	0412F007.D	1.	8270LL @ 2.0/4.0ppm SVM19-15H KW	/G05 SVM\W0505864\7-ICAL.H	
8	8	0412F008.D	1.	8270LL @ 3.0/6.0ppm SVM19-15I KW0	G05	12 Apr 2005 14:4!
					SVM\W0505864\8-ICAL.H	12 Apr 2005 15:2 ²
9	9	0412F009.D	1.	8270LL @ 4.0/8.0ppm SVM19-15J KW	G05 SVM\W0505864\9-ICAL.H	
						12 Apr 2005 16:04
10	10	0412F010.D	1.	8270LL @ 5.0/10.0ppm SVM19-15K K\	WG0 SVM\W0505864\10-ICAL.H	
11	11	0412F011.D	1.	8270LL CLP @ 0.1ppm SVM18-35D K\		12 Apr 2005 16:40
	• •	01721011.0		ozrozz ozr @ d. rppm o viviro dob iki	SVM\W0505864\11-ICAL.H	40 Am 2005 47:00
12	12	0412F012.D	1.	8270LL CLP @ 0.2ppm SVM18-35E KV		12 Apr 2005 17:2(
					SVM\W0505864\12-ICAL.H	12 Apr 2005 18:02
13	13	0412F013.D	1.	8270LL CLP @ 1.0ppm SVM18-45G K	WG05 SVM\W0505864\13-ICAL.H	
14	14	0412F014.D	1.	8270LL CLP @ 2.0ppm SVM19-26A K\	NG05	12 Apr 2005 18:4 ⁻
					SVM\W0505864\14-ICAL.H	12 Apr 2005 19:2(
15	15	0412F015.D	1.	8270LL CLP @ 3.0ppm SVM18-45I KV	VG05 SVM\W0505864\15-ICAL.H	127 (\$1.200)
16	16	0412F016.D	1.	927011 CLD @ 5 0ppm \$\/M49 45 \/M		12 Apr 2005 20:00
10	10	04121 0 10.D	1.	8270LL CLP @ 5.0ppm SVM18-45J KV	SVM\W0505864\16-ICAL.H	40 4
17	17	0412F017.D	1.	8270LL @ 3.0ppm SVM19-29E KWG05		12 Apr 2005 20:39
					SVM\W0505864\17-ICV.H	12 Apr 2005 21:1{
18	18	0412F018.D	1.	8270LL CLP @ 3.0ppm SVM19-30A K\	WG05 SVM\W0505864\18-ICV.H	
				. 11 4375		12 Apr 2005 21:57
				114517		

CAL4375

MINN X

DFTPP

Data File : J:\MS10\DATA\041205\0412F001.D

Acq On

Vial: 1 Operator: DHaderly

: 12 Apr 2005 10:45 am : KWG0505864-1 | TUNE | SVM19-28E Sample

Inst : MS10

Misc : SVM\W0505864\1-TUNE.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Spectrum Information: Scan 1130

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
51	198 69	30	80	39.9	26744	PASS
69	198	0.00	100	47.7	31968	PASS
70 127	69 198	0.00	2 75	0.0 38.6	0	PASS
197	198	0.00	1	0.0	25880 0	PASS PASS
198	198	100	100	100.0	67024	PASS
199 275	198 198	5 10	9	6.5 24.8	4385	PASS
365	198	0.75	30 100	24.8 3.7	16624 2505	PASS PASS
441	443	0.01	100	76.7	8692	PASS
441 442	443 198	0.01	100	76.7	8692	PASS
442	442	40 15	110 24	84.8 19.9	56856 11328	PASS PASS

= 4/11/15

0412F001.D 0412BNLL.M

Tue Apr 12 11:37:14 2005

Scan 1130 (1 KWG0505864-1 Modified:sub	- TUNE							
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.	
35.95	24	54.85	275	73.05	346	84.90	541	
37.05	346	55.95		73.95	3030	86.05	824	
37.95	512	56.95		74.95	4356	86.95	292	
38.95	2538	57.75	103	75.95	1511	88.05	168	
39.95	82	61.00	427	77.00	23448	90.95	682	
41.00	11	61.90	534	78.00	1531	91.95	698	
43.05 44.05	6	62.90	1023	78.90		92.85	5025	
50.00	64 8364	63.90 65.00	170 429	79.90		94.00	370	
51.05	26744	66.90	4 <i>29</i> 158	80.90 82.00	2141 548	95.90	29	
51.95	1255	68.95	31968	82.90	461	97.90 98.90	4057 2430	
Scan 1130 (1			001.D	02.50	401	90.90	2430	
KWG0505864-1 Modified:sub	TUNE	SVM19-28						
m/z	abund.		abund.	m/z	abund.	m/z	abund.	
99.90	152	116.90	12690	128.90	13437	140.95	1967	
100.90	1005	117.90	805	129.90	1269	141.85	642	
102.95	512	119.10	139	130.90	294	142.95	428	
103.95	944	119.85	125	132.00	135	146.00	374	
104.85	878	120.95	145	132.80	179	147.00	1030	
106.95 107.85	8214 1175	121.85 122.95	862	133.90	458	147.90	2911	
107.85	14132	122.95	891 612	134.90	836	148.90	517	
111.00	2290	124.95	542	135.90 136.95	416 657	149.80	126	
111.90	369	124.95	25880	138.05	173	151.00 151.70	260 146	
112.90	150	128.00	2098	139.85	213	152.90	695	
Scan 1130 (1				100.00	210	132.70	. 69,5	
KWG0505864-1	TUNE	SVM19-28						
Modified:sub								
m/z	abund.		abund.	m/z	abund.	m/z	abund.	
153.95	421	167.90	2007	181.00	814	192.95	1126	
154.95 155.95	995	168.90	332	182.00	191	193.85	264	
156.85	1108 295	170.85 171.95	221	183.90	263	195.95	2194	
157.85	494	172.85	407 469	184.90	1470 8995	197.90	67024	
158.85	213	173.95	795	185.90 186.90	2542	198.90 199.90	4385	
159.85	515	174.95	1244	187.85	282	201.40	339 356	
160.95	765	175.85	388	188.95	908	202.90	645	
161.95	218	176.85	779	189.75	149	203.90	2885	
164.90	925	178.85	3123	190.85	490	204.95	4597	
166.90	4431	179.90	1710	191.95	1008	205.95	17432	
Scan 1130 (1								Í
KWG0505864-1		SVM19-28	E					١.
Modified:sub		,		,			Ч	The second
m/z 206.95	abund.	m/z	abund.	m/z	abund.	m/z	abund.	
206.95	2211 847	222.95	1235	235.80	312	250.90	144	
207.85	300	223.95 224.95	10716 2541	236.90	450	251.90	124	
209.95	468	224.95	5760	238.90 239.75	271	252.90	222	
210.85	777	227.85	776	240.85	163 391	254.90 255.90	39152 5695	
211.55	238	228.85	927	241.95	630	255.90 256.95	476	
214.90	245	229.85	113	243.95	8080	257.85	3027	
216.00	597	231.00	474	244.95	1033	258.95	535	
216.90	5688	232.80	100	245.85	2059			
216.90 217.80 220.90			100 359 397		2059 405	260.85 264.90	112 1231	

Scan 1130 KWG0505864- Modified:su	-1 TUNE	n): 0412F0 SVM19-28					
m/z	abund.	m/z	م مدیدها	/	الم مديد ما	/	. 1
270.80	121	292.85	abund.	m/z	abund.	m/z	abund.
270.80	1161		273	321.00	152	352.00	648
272.90	3313	293.85	132	322.90	1579	352.90	384
		295.85	6108	323.90	315	353.90	469
274.95	16624	296.85	823	326.85	372	364.85	2505
275.95	2239	301.70	112	327.95	139	365.75	369
276.85	1870	302.90	660	331.95	127	371.10	140
277.85	319	303.80	175	332.85	142	371.90	856
282.90	188	307.95	105	333.90	992	372.90	191
283.90	143	313.85	323	334.90	246	382.95	252
284.80	286	314.75	693	340.90	175	389.90	135
288.90	107	315.95	298	345.85	370	401.90	358
Scan 1130	· · · · · · · · · · · · · · · · · · ·	•					
KWG0505864-		SVM19-28	E				
Modified:su							
m/z	abund.	m/z	abund.	m/z	abund.	m/z	abund.
402.90	432						
403.90	159						
420.80	435						
421.90	428						
422.90	2882						
423.90	569						
441.00	8692						
441.90	56856						
442.90	11328						
443.90	967						

4/14/61

Salials

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F001.D

Vial: 1

Acq On : 12 Apr 2005 10:45 am Operator: DHaderly

MS Integration Params: RTEINT.P Quant Time: Apr 12 11:42 2005

Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Tue Apr 12 09:27:14 2005 Response via : Multiple Level Calibration

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F001.D

Vial: 1

Acq On : 12 Apr 2005 10:45 am Operator: DHaderly Sample : KWG0505864-1 | TUNE | SVM19-28E Inst : MS10

Inst : MS10 Multiplr: 1.00

Misc : SVM\W0505864\1-TUNE.H MS Integration Params: RTEINT.P

Quant Time: Apr 12 11:42 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Tue Apr 12 09:27:14 2005 Response via : Multiple Level Calibration

File : J:\MS10\DATA\041205\0412F001.D

Operator : DHaderly

Acquired : 12 Apr 2005 10:45 am using AcqMethod BNALL

Instrument: MS10

Sample Name: KWG0505864-1 | TUNE | SVM19-28E

Misc Info : SVM\W0505864\1-TUNE.H

Vial Number: 1

2 1	.9.053 rB	B 0.072 B 0.072 B 0.123	950.00 15.0 2549 19.0 161078 19.5	626 15.697 12 19.083-DDT Degrada Kron - 03 19.626	1.6%
-----	-----------	-------------------------------	---	---	------

yould

gy/W/8

Data File : J:\MS10\DATA\041205\0412F002.D

Vial: 2 Acq On : 12 Apr 2005 11:25 am Operator: DHaderly Sample : KWG0505864-2 | IB | 8270-LL Misc : SVM\W0505864\2-IB.H Inst : MS10 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 12 12:33:40 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Tue Apr 12 09:27:14 2005

Response via: Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.75 10.69 13.52 15.94 20.43		58200 195959 98710 160149 129743 97346	1000.0 1000.0 1000.0	0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml	-0.07 -0.08 -0.08 -0.12
System Monitoring Compounds						0.20
4) 2-Fluorophenol		112		0.00		0.41
Spiked Amount 3750.000 7) Phenol-d6	Range 38 0.00			ry =		₹#
Spiked Amount 3750.000	Range 43			0.00 ry =		o #
21) Nitrobenzene-d5	0.00			0.00		o #
Spiked Amount 2500.000	Range 30			ry =		2 H
42) 2-Fluorobiphenyl	0.00			0.00		0 11
Spiked Amount 2500.000	Range 37			ry =		% #
64) 2,4,6-Tribromophenol	0.00		0		ng/ml	0 11
Spiked Amount 3750.000	Range 38		-	ry =		%#
77) Terphenyl-d14	18.58			14.73		
Spiked Amount 2500.000	Range 54	- 158		ry =		
Target Compounds					Q.	value
8) Phenol	8.33	94	567	6.91	ng/ml~	
69) Phenanthrene	15.98	178	764		ng/ml	
73) Fluoranthene	17.91	202	976		ng/ml	
76) Pyrene	18.28	202	1195		ng/ml	
80) Benz(a)anthracene	20.42				ng/ml	73
82) Bis(2-ethylhexyl) Phtha	lat 20.61	149	509	3.51	ng/ml	73

94/14/5

^{(#) =} qualifier out of range (m) = manual integration 0412F002.D 0412BNLL.M Tue Apr 12 12:39:01 2005

(QT Reviewed)

Quant Results File: 0412BNLL.RES 2 DHaderly MS10 1.00 Operator: Vial: Multiplr: Inst J:\MS10\DATA\041205\0412F002.D 8270-LL SVM\W0505864\2-IB.H MS Integration Params: RTEINT.P 11:25 IB Quant Time: Apr 12 12:38 2005 KWG0505864-2 12 Apr 2005 Data File Acq On Sample Misc

J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) 8270LL ICAL Tue Apr 12 09:27:14 2005 Initial Calibration Response via Last Update Method Title

Tue Apr 12 12:39:01 0412BNLL.M 0412F002.D

2005

Data File : J:\MS10\DATA\041205\0412F003.D

Vial: 3 Acq On : 12 Apr 2005 12:06 pm Operator: DHaderly Sample : 8270LL @ 0.1ppm | SVM19-15D | KWG0505864 Inst : MS10 Misc : SVM\W0505864\3-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:07 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-Dichlorobenzene-d4	8.75	152	65376	1000.00 ng/ml	0.00
23) Naphthalene-d8	10.69	136	225056	1000.00 ng/ml	0.00
37) Acenaphthene-d10	13.52	164	114657	1000.00 ng/ml	0.00
63) Phenanthrene-d10	15.94	188	176030	1000.00 ng/ml	0.00
74) Chrysene-d12	20.43		136060	1000.00 ng/ml	0.00
83) Perylene-d12	24.43	264	102545	1000.00 ng/ml	0.00
System Monitoring Compounds					
4) 2-Fluorophenol	6.98	112	6351	80.99 ng/ml	0.00
	Range 38	- 110	Recove	ery = 2.16%	‡
7) Phenol-d6	8.28	99	7465	81.87 ng/ml	0.00
	_	- 128	Recove		‡
21) Nitrobenzene-d5	9.58	82	8122	91.09 ng/ml	0.00
		- 139			‡
42) 2-Fluorobiphenyl	12.44	172	14375	102.62 ng/ml	0.00
	_	- 126			
64) 2,4,6-Tribromophenol	14.81	330		85.19 ng/ml	0.00
	_	- 157			
77) Terphenyl-d14	18.58			97.12 ng/ml	0.00
Spiked Amount 2500.000 F	Range 54	- 158	Recove	ery = 3.88%	‡
Target Compounds				Qva	alue
3) Pyridine	5.52	79	8708m	Qva 89.16 ng/ml	alue
3) Pyridine 6) Bis(2-chloroethyl) Ether	8.38	93	6953	89.16 ng/ml 85.46 ng/ml	93
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol	8.38 8.30	93 94	6953 10127	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml	93 78
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline	8.38 8.30 8.29	93 94 93	6953 10127 10646	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml#	93 78 89
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol	8.38 8.30 8.29 8.45	93 94 93 128	6953 10127 10646 7710	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml	93 78 89 98
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene	8.38 8.30 8.29 8.45 8.66	93 94 93 128 146	6953 10127 10646 7710 8106	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml	93 78 89 98 95
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene	8.38 8.30 8.29 8.45 8.66 8.77	93 94 93 128 146 146	6953 10127 10646 7710 8106 8532	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml	93 78 89 98 95
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene	8.38 8.30 8.29 8.45 8.66 8.77	93 94 93 128 146 146	6953 10127 10646 7710 8106 8532 7954	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml	93 78 89 98 95 96 97
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98	93 94 93 128 146 146 146	6953 10127 10646 7710 8106 8532 7954 4865	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml	93 78 89 98 95 96 97
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17	93 94 93 128 146 146 146 108 45	6953 10127 10646 7710 8106 8532 7954 4865 14878	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml#	93 78 89 98 95 97 91 65
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17	93 94 93 128 146 146 146 108 45	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml	93 78 89 98 95 97 91 65 99
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.48	93 94 93 128 146 146 146 108 45 107	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml	93 78 98 95 95 97 91 65 95 95
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamine	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.48 9.36	93 94 93 128 146 146 108 45 107 117	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929 6906	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml 115.24 ng/ml	93 78 89 98 95 97 91 65 95 95 95
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamine 20) 4-Methylphenol	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.18 9.36 9.40	93 94 93 128 146 146 108 45 107 117 70	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929 6906 8836	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml 115.24 ng/ml 110.07 ng/ml	93 78 89 95 95 97 95 95 95 95 95 95 95 95
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamine 20) 4-Methylphenol 22) Nitrobenzene	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.48 9.36 9.40 9.61	93 94 93 128 146 146 108 45 107 117 70 107	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929 6906 8836 9261	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml 115.24 ng/ml 110.07 ng/ml 99.03 ng/ml	93 78 89 95 95 97 91 95 95 95 95 95 95 95 95
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamine 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.48 9.36 9.40 9.61 9.99	93 94 93 128 146 146 146 107 117 70 107 77 82	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929 6906 8836 9261 13087	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml 115.24 ng/ml 110.07 ng/ml 99.03 ng/ml 89.74 ng/ml	93 78 98 95 95 97 95 95 95 95 95 95 95 95 95 95 95 95 95
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamine 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.48 9.36 9.40 9.61 9.99 10.10	93 94 93 128 146 146 146 107 117 70 107 77 82 139	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929 6906 8836 9261 13087 4165	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml 115.24 ng/ml 110.07 ng/ml 99.03 ng/ml 99.03 ng/ml 89.74 ng/ml 98.76 ng/ml	93 78 98 99 99 99 99 99 99 99 99 99 99 99 99
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamine 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol 26) 2,4-Dimethylphenol	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.48 9.36 9.36 9.40 9.61 9.99 10.10	93 94 93 128 146 146 146 108 45 107 117 70 107 77 82 139 122	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929 6906 8836 9261 13087 4165 6198	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml 115.24 ng/ml 115.24 ng/ml 110.07 ng/ml 99.03 ng/ml 99.03 ng/ml 99.74 ng/ml 98.76 ng/ml 105.64 ng/ml	93 78 98 95 99 95 99 99 99 99 99 99 99 99 99 99
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) Et 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamine 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol	8.38 8.30 8.29 8.45 8.66 8.77 8.99 8.98 9.17 9.17 9.48 9.36 9.36 9.40 9.61 9.99 10.10	93 94 93 128 146 146 146 108 45 107 117 70 107 77 82 139 122 93	6953 10127 10646 7710 8106 8532 7954 4865 14878 6426 3929 6906 8836 9261 13087 4165	89.16 ng/ml 85.46 ng/ml 111.05 ng/ml 88.71 ng/ml# 106.01 ng/ml 90.86 ng/ml 92.11 ng/ml 96.62 ng/ml 95.46 ng/ml 100.71 ng/ml# 118.25 ng/ml 96.61 ng/ml 115.24 ng/ml 110.07 ng/ml 99.03 ng/ml 99.03 ng/ml 89.74 ng/ml 98.76 ng/ml	93 78 98 99 99 99 99 99 99 99 99 99 99 99 99

^{(#) =} qualifier out of range (m) = manual integration 0412F003.D 0412BNLL.M Wed Apr 13 08:35:06 2005

Sulf Page 1

Data File : J:\MS10\DATA\041205\0412F003.D

Vial: 3 Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:07 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via: Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Un	nit	Qvalue
30)	1,2,4-Trichlorobenzene	10.60	180	8086	104.65	ng/ml	. 97
31)	Naphthalene	10.72	128	20622	95.19		
32)	4-Chloroaniline	10.84	127	8793	89.06	ng/ml	. 95
33)	Hexachlorobutadiene	10.92	225	5055	110.09	ng/ml	. 95
35)	4-Chloro-3-methylphenol	11.66	107	6657	103.80	ng/ml	. 98
36)	2-Methylnaphthalene	11.84	141	11761	95.94		
39)	Hexachlorocyclopentadiene	12.08	237	1194	37.20		
40)	2,4,6-Trichlorophenol	12.32	196	4504	108.07		
41)	2,4,5-Trichlorophenol	12.39	196	4953	108.54	ng/ml	. 99
44)	2-Chloronaphthalene	12.62	127	5647	97.14	ng/ml	. 98
45)	2-Nitroaniline	12.81	65	5162	91.76		
46)	Acenaphthylene	13.28	152	18823	91.70		
47)	Dimethyl Phthalate	13.13			95.09		
48)	2,6-Dinitrotoluene	13.22	165	3682	97.17		
49)	Acenaphthene	13.57	154		94.08		
50)	3-Nitroaniline	13.48	138		76.62		
52)	Dibenzofuran	13.85	168		98.60		
54)	2,4-Dinitrotoluene	13.87		3961	81.36		
	2,3,4,6-Tetrachlorophenol	14.08	232		80.57		
	Fluorene	14.41		13309	92.51		
57)	4-Chlorophenyl Phenyl Ethe			7228	101.04		
	Diethyl Phthalate	14.28	149		100.00		
	4-Nitroaniline	14.47			66.68		
61)	N-Nitrosodiphenylamine	14.64		8864	87.97		
	Azobenzene	14.69	77		85.84		
65)	4-Bromophenyl Phenyl Ether	15.23	248		98.47		
	Hexachlorobenzene	15.30	284		99.33		
	Phenanthrene	15.97	178		97.14		
70)	Anthracene	16.06	178		95.83		99
71)	Carbazole	16.35	167		95.25		
72)	Di-n-butyl Phthalate	16.97	149		103.36		
	Fluoranthene	17.91	202		103.48		99 41
	Benzidine	18.18	184		71.81		
76)	Pyrene	18.28	202		96.66		
	Butyl Benzyl Phthalate	19.43	149	9996	87.48		
79)	3,3'-Dichlorobenzidine	20.41	252	6641	105.05	-	
	Benz (a) anthracene	20.41	228		98.35		
	Chrysene	20.48	228		96.89		
	Bis(2-ethylhexyl) Phthalat	20.61	149		92.80	-	
	Di-n-octyl Phthalate	22.39			86.99		
	Benzo(b) fluoranthene	23.28			95.91		

^{(#) =} qualifier out of range (m) = manual integration 0412F003.D 0412BNLL.M Wed Apr 13 08:35:06 2005

Quantitation Report (QT Reviewed)

Data File : J:\MS10\DATA\041205\0412F003.D Vial: 3

Operator: DHaderly Acq On : 12 Apr 2005 12:06 pm

Sample : 8270LL @ 0.1ppm | SVM19-15D | KWG0505864 Inst : MS10 Misc : SVM\W0505864\3-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:07 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
86)	Benzo(k)fluoranthene	23.38	252	14070	98.70 ng/mi	l 98
	Benzo(a)pyrene	24.25	252	13727	100.52 ng/m	l 96
88)	Indeno(1,2,3-cd)pyrene	27.02	276	11716	103.07 ng/m	l 96
89)	Dibenz(a,h)anthracene	27.10	278	10679	97.34 ng/m	l 90
90)	Benzo(g,h,i)perylene	27.54	276	11562	101.80 ng/m	l 99

^{(#) =} qualifier out of range (m) = manual integration 0412F003.D 0412BNLL.M Wed Apr 13 08:35:06 2005

28.00 29.00

25.00 26.00 27.00

24.00

22.00 23.00

20,00 21,00

18.00 19.00

10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00

9.00

8.00

7.00

9

5.00

Time-->

Ö

2005

08:35:07

Reviewed)

LŎ)

T,enelyteq(i,rl,g)osned Transuss (Haris (A, b) snabro OT energa (a) Dynene (1,21b-energy) 0412BNLL.RES Tenatheranthere.T DHaderly Di-n-octyl Phthalate,TC MS10 Vial: Results File: Operator: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) 8270LL ICAL T,etislishine (iyxəniyinə-2)sis Multiplr Butyl Benzyl Phthalate,T Inst 8,41b-lynendre TIC: 0412F003.D T-pglbjrne8 KWG0505864 Cluoranthene, TC Quant Di-n-butyl Phthalate, T 1,01b-enenthrenef, henanthrened 10,1 Hexaensehoosel Zener, T Ether, T Division in the control of the contr J:\MS10\DATA\041205\0412F003 8270LL @ 0.1ppm | SVM19-15D 2005 Wed Apr 13 06:36:18 Initial Calibration OT, lone-indivine, e.o. oin) - A Janeis independent of the control of the contro SVM\W0505864\3-ICAL.H MS Integration Params: RTEINT.P 6:01 2005 12 Apr 2005 Tantia (ivoje paralentika) Ether T There is the control of the con Quant Time: Apr 13 Response via 2-Fluorophenol, S Last Update Data File Acq On Sample Method Title Misc Abundance 3400000 320000 2800000 220000 2000000 800000 400000 3000000 2600000 2400000 800000 1600000 000009 1400000 1200000 20000 1000000 L.

Wed Apr 13

0412BNLL.M 0412F003.D

747

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F003.D

Vial: 3 : 12 Apr 2005 12:06 pm Operator: DHaderly

: 8270LL @ 0.1ppm | SVM19-15D | KWG0505864 Inst Sample : MS10 Misc : SVM\W0505864\3-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 5:59 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via: Multiple Level Calibration

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F003.D

Vial: 3

Acq On : 12 Apr 2005 12:06 pm Operator: DHaderly Sample : 8270LL @ 0.1ppm | SVM19-15D | KWG0505864 Inst : MS10

: 8270LL @ 0.1ppm | SVM19-15D | KWG0505864 Inst : MS10 : SVM\W0505864\3-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:00 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Misc

Last Update : Wed Apr 13 05:58:48 2005 Response via : Multiple Level Calibration

0412F003.D 0412BNLL.M

Wed Apr 13 06:00:06 2005

Data File : J:\MS10\DATA\041205\0412F004.D Vial: 4

Acq On : 12 Apr 2005 12:46 pm Operator: DHaderly

: 8270LL @ 0.2/0.5ppm | SVM19-15E | KWG050 Inst : MS10 Sample Misc : SVM\W0505864\4-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:08 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

1) 1,4-Dichlorobenzene-d4 8.75 152 65750 1000.00 ng/ml 0.00 23) Naphthalene-d8 10.69 136 221857 1000.00 ng/ml 0.00 63) Phenanthrene-d10 15.94 188 187365 1000.00 ng/ml 0.00 63) Phenanthrene-d12 20.43 240 146123 1000.00 ng/ml 0.00 83) Perylene-d12 24.42 264 112065 1000.00 ng/ml 0.00 83) Perylene-d12 8.28 99 16396 178.79 ng/ml 0.00 90 90 90 90 90 90 90 90 90 90 90 90 9	Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
23) Naphthalene-d8 37) Acenaphthene-d10 13.51 164 18188 1000.00 ng/ml 0.00 63) Phenanthrene-d10 15.94 188 187365 1000.00 ng/ml 0.00 74) Chrysene-d12 20.43 240 146123 1000.00 ng/ml 0.00 83) Perylene-d12 24.42 264 112065 1000.00 ng/ml 0.00 83) Perylene-d12 24.42 264 112065 1000.00 ng/ml 0.00 83) Perylene-d12 8 4) 2-Fluorophenol 8 6.98 112 8 8128 99 16396 178.79 ng/ml 0.00 8 82) Spiked Amount 3750.000 8 Range 43 - 128 8 Recovery = 4.53%# 82 121) Nitrobenzene-d5 8 Spiked Amount 2500.000 8 Range 30 - 139 8 Recovery = 4.77%# 12.44 172 8 Spiked Amount 2500.000 8 Range 37 - 126 8 Recovery = 8.13%# 8 Recovery = 8.13%# 8 Recovery = 8.13%# 8 Recovery = 1.28%# 8 Recovery = 8.13%# 8 Recovery = 7.28%# 8 Recovery = 8.13%# 8 Recovery = 8.13%# 8 Recovery = 7.87%# 9 Notirosodimethylamine 5.39 42 12498m 188.30 ng/ml 0.00 8 Perplened 8.28 93 13862 169.41 ng/ml 96 8 Pencol 8.28 93 22263 184.45 ng/ml 96 8 Pencol 8.28 93 22263 184.45 ng/ml 96 9 Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 96 11) 1,3-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 11) 1,3-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 11) 1,3-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 11) 1,3-Dichlorobenzene 9.48 17 804 196.68 ng/ml 97 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 96 15) Bis(2-chlorostopropyl) Eth 9.17 45 8733 193.39 ng/ml 97 18) Hexachloroethane 9.48 17 804 196.68 ng/ml 97 19) N-Nitrobenzene 9.61 77 181858 193.07 ng/ml 96 20) Mitrobenzene 9.62 26075 181.39 ng/ml 97 21) Spikcohomone 9.98 82 26075 181.39 ng/ml 98 22) Nitrobenzene 9.61 77 181858 193.07 ng/ml 98 23) Recovery 9 1	1) 1,4-Dichlorobenzene-d4	8.75	152	65750	1000.00 ng/ml	0.00
37) Acenaphthene-d10	23) Naphthalene-d8	10.69	136	221857		0.00
63) Phenanthrene-d10			164			
74) Chrysene-d12	63) Phenanthrene-d10					
System Monitoring Compounds 4 2-Fluorophenol 6.98 112 13398 169.88 ng/ml 0.00 Spiked Amount 3750.000 Range 38 - 110 Recovery = 4.53	74) Chrysene-d12					
A 2-Fluorophenol 6.98 112 13398 169.88 ng/ml 0.00 Spiked Amount 3750.000 Range 38 - 110 Recovery = 4.53% # 1630.000 Spiked Amount 3750.000 Range 43 - 128 Recovery = 4.77% # 16312 181.89 ng/ml 0.00 Spiked Amount 2500.000 Range 30 - 139 Recovery = 7.28% # 42) 2-Fluorobiphenyl 12.44 172 29353 203.29 ng/ml 0.00 Spiked Amount 2500.000 Range 37 - 126 Recovery = 7.28% # 42) 2-Fluorobiphenyl 14.81 330 3766 180.82 ng/ml 0.00 Spiked Amount 3750.000 Range 38 - 157 Recovery = 4.82% #						
A	System Monitoring Compounds					
Spiked Amount 3750.000 Range 38 - 110 Recovery = 4.53%# 7) Phenol-d6 8.28 99 16396 178.79 ng/ml 0.00 Spiked Amount 3750.000 Range 43 - 128 Recovery = 4.77%# 21) Nitrobenzene-d5 9.58 82 16312 181.89 ng/ml 0.00 Spiked Amount 2500.000 Range 30 - 139 Recovery = 7.28%# 29353 203.29 ng/ml 0.00 Spiked Amount 2500.000 Range 37 - 126 Recovery = 8.13%# 64) 2.4,6-Tribromophenol 14.81 330 3766 180.82 ng/ml 0.00 Spiked Amount 3750.000 Range 38 - 157 Recovery = 4.82%# 77) Terphenyl-d14 18.58 244 26234 196.75 ng/ml 0.00 Spiked Amount 2500.000 Range 54 - 158 Recovery = 7.87%# Target Compounds 20 N-Mitrosodimethylamine 5.39 42 12498m 188.30 ng/ml 30 Pyridine 5.48 79 15539m 158.20 ng/ml 96 80 Phenol 8.30 94 42857 467.28 ng/ml 96 96 Phenol 8.30 94 42857 467.28 ng/ml 96 96 Phenol 8.30 94 42857 467.28 ng/ml 96 96 Phenol 8.45 128 34550 472.89 ng/ml 96 96 Phenol 8.45 128 34550 472.89 ng/ml 96 10 2-Chlorophenol 8.45 128 34550 472.89 ng/ml 96 11 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 96 11 1,3-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 12 1,4-Dichlorobenzene 8.97 146 17938 192.55 ng/ml 96 13 1,2-Dichlorobenzene 8.97 146 16020 193.49 ng/ml 96 13 1,2-Dichlorobenzene 8.97 146 17938 192.55 ng/ml 96 13 1,2-Dichlorobenzene 9.61 77 146 199.97 ng/ml 98 146 14		6.98	112	13398	169.88 ng/ml	0 00
Target Compounds						
Spiked Amount 3750.000 Range 43 - 128 Recovery = 4.77%# 21) Nitrobenzene-d5 9.58 82 16312 181.89 ng/ml 0.00 25piked Amount 2500.000 Range 30 - 139 Recovery = 7.28%# 42) 2-Fluorobiphenyl 12.44 172 29353 203.29 ng/ml 0.00 Spiked Amount 2500.000 Range 37 - 126 Recovery = 8.13%# 64) 2.4,6-Tribromophenol 14.81 330 3766 180.82 ng/ml 0.00 Spiked Amount 3750.000 Range 38 - 157 Recovery = 4.82%# 77) Terphenyl-d14 18.58 244 26234 196.75 ng/ml 0.00 Spiked Amount 2500.000 Range 54 - 158 Recovery = 7.87%# Target Compounds Qvalue 2) N-Nitrosodimethylamine 5.48 79 15539m 158.20 ng/ml 3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 10) 2-Chlorobenzene 8.65 146 16466 163.52 ng/ml 96 13) 1,2-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 13) 1,2-Dichlorobenzene 8.97 108 9434 184.05 ng/ml 96 13) 1,2-Dichlorobenzene 8.97 108 9434 184.05 ng/ml 96 13) 1,2-Dichlorobenzene 8.97 108 9434 184.05 ng/ml 97 149 Benzyl Alcohol 9.17 107 27326 499.97 ng/ml 93 149 14		8 28	99			
21) Nitrobenzene-d5						
Spiked Amount 2500.000 Range 30 - 139 Recovery = 7.28%# 42) 2-Fluorobiphenyl 12.44 172 29353 203.29 ng/ml 0.00 Spiked Amount 2500.000 Range 37 - 126 Recovery = 8.13%# 64) 2,4,6-Tribromophenol 14.81 330 3766 180.82 ng/ml 0.00 Spiked Amount 3750.000 Range 38 - 157 Recovery = 4.82%# 77) Terphenyl-d14 18.58 244 26234 196.75 ng/ml 0.00 Spiked Amount 2500.000 Range 54 - 158 Recovery = 7.87%# Target Compounds 2) N-Nitrosodimethylamine 5.39 42 12498m 188.30 ng/ml 3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis (2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 98 12) 1,4-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 95 15) Bis (2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 98 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 21) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis (2-chloroethoxy) methane 10.34 93 17200 174.94 ng/ml 98						
12.44						
Spiked Amount 2500.000 Range 37 - 126 Recovery = 8.13%# 64) 2,4,6-Tribromophenol 14.81 330 3766 180.82 ng/ml 0.00 Spiked Amount 3750.000 Range 38 - 157 Recovery = 4.82%# 77) Terphenyl-d14 18.58 244 26234 196.75 ng/ml 0.00 Spiked Amount 2500.000 Range 54 - 158 Recovery = 7.87%# Target Compounds 2) N-Nitrosodimethylamine 5.39 42 12498m 188.30 ng/ml 3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 98 12) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 93 16) N-Nitrosodi-n-propylamine 9.36 70 18666 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 98 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
A	•• •• •• ••					
Spiked Amount 3750.000 Range 38 - 157 Recovery = 4.82%# 77) Terphenyl-d14 18.58 244 26234 196.75 ng/ml 0.00 Spiked Amount 2500.000 Range 54 - 158 Recovery = 7.87%# Target Compounds 2) N-Nitrosodimethylamine 5.39 42 12498m 188.30 ng/ml 3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 98 12) 1,4-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 21) Isophorone 9.98 82 26075 181.39 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 23) Nitrobenzene 9.98 82 26075 181.39 ng/ml 98 24) Isophorone 9.98 82 26075 181.39 ng/ml 98 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
77) Terphenyl-d14						
Target Compounds 2) N-Nitrosodimethylamine 3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.28 93 22263 184.45 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 98 12) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 21) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 22) Nitrobenzene 9.98 82 26075 181.39 ng/ml 98 24) Isophorone 9.98 82 26075 181.39 ng/ml 98 25) 2-Nitrophenol 10.21 122 28697 496.17 ng/ml 98 26) 2,4-Dimethylphenol 10.34 93 17200 174.94 ng/ml 98						
Target Compounds 2) N-Nitrosodimethylamine 5.39 42 12498m 188.30 ng/ml 3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 166 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 95 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 21) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 24) Isophorone 9.98 82 26075 181.39 ng/ml 98 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
2) N-Nitrosodimethylamine 5.39 42 12498m 188.30 ng/ml 3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 97 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 20) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 21 Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98	Spiked Amount 2500.000	Range 54	- 158	Recove	ry = 7.87%	·#
3) Pyridine 5.48 79 15539m 158.20 ng/ml 6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 95 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 97 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 21) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98					Qv	alue
6) Bis(2-chloroethyl) Ether 8.38 93 13862 169.41 ng/ml 96 8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 99 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 22) Nitrobenzene 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98		5.39	42	12498m	188.30 ng/ml	
8) Phenol 8.30 94 42857 467.28 ng/ml 96 9) Aniline 8.28 93 22263 184.45 ng/ml 96 10) 2-Chlorophenol 8.45 128 34590 472.89 ng/ml 96 11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 95 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 22) Nitrobenzene 9.98 82 26075 181.39 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy) methane 10.34 93 17200 174.94 ng/ml 98			79	15539m	158.20 ng/ml	
9) Aniline	6) Bis(2-chloroethyl) Ether	8.38	93	13862	169.41 ng/ml	96
9) Aniline	8) Phenol	8.30	94	42857	467.28 ng/ml	96
10) 2-Chlorophenol	9) Aniline	8.28	93	22263		96
11) 1,3-Dichlorobenzene 8.65 146 16466 183.52 ng/ml 98 12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98	10) 2-Chlorophenol	8.45	128	34590		
12) 1,4-Dichlorobenzene 8.77 146 17938 192.55 ng/ml 96 13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98	11) 1,3-Dichlorobenzene	8.65	146	16466		
13) 1,2-Dichlorobenzene 8.99 146 16020 193.49 ng/ml 95 14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 98 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98	12) 1,4-Dichlorobenzene	8.77	146	17938		
14) Benzyl Alcohol 8.97 108 9434 184.05 ng/ml 99 15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98	13) 1,2-Dichlorobenzene	8.99	146			
15) Bis(2-chloroisopropyl) Eth 9.17 45 28733 193.39 ng/ml 93 16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98	14) Benzyl Alcohol	8.97	108			
16) 2-Methylphenol 9.17 107 27326 499.97 ng/ml 97 18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98	15) Bis(2-chloroisopropyl) E	Eth 9.17				
18) Hexachloroethane 9.48 117 8044 196.68 ng/ml 91 19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
19) N-Nitrosodi-n-propylamine 9.36 70 11866 196.89 ng/ml 96 20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
20) 4-Methylphenol 9.40 107 39686 491.56 ng/ml 98 22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
22) Nitrobenzene 9.61 77 18158 193.07 ng/ml 96 24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
24) Isophorone 9.98 82 26075 181.39 ng/ml 97 25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
25) 2-Nitrophenol 10.10 139 21205 510.04 ng/ml 98 26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98					<u> </u>	
26) 2,4-Dimethylphenol 10.21 122 28697 496.17 ng/ml 98 27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
27) Bis(2-chloroethoxy)methane 10.34 93 17200 174.94 ng/ml 98						
						

^{(#) =} qualifier out of range (m) = manual integration0412F004.D 0412BNLL.M Wed Apr 13 08:35:09 2005

Page 1 THINK

Quantitation Report (QT Reviewed)

Data File : J:\MS10\DATA\041205\0412F004.D Vial: 4

Acq On : 12 Apr 2005 12:46 pm Operator: DHaderly

Sample : 8270LL @ 0.2/0.5ppm | SVM19-15E | KWG050 Inst : MS10 Misc : SVM\W0505864\4-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:08 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
28)	2,4-Dichlorophenol	10.50	162	31100	507.61 ng/m	1 99
29)	Benzoic Acid	10.36	122	6130	211.29 ng/m	
30)	1,2,4-Trichlorobenzene	10.61	180	15627	205.17 ng/m	l 94
31)	Naphthalene	10.72	128	41260	193.21 ng/m	l 99
32)	4-Chloroaniline	10.83	127	19041	195.65 ng/m	l 96
	Hexachlorobutadiene	10.92	225	10172	224.73 ng/m	l 98
35)	4-Chloro-3-methylphenol	11.66	107	30111	476.30 ng/m	l 96
36)	2-Methylnaphthalene	11.84	141	24696	204.37 ng/m	l 95
39)	Hexachlorocyclopentadiene	12.08	237	3701	111.88 ng/m	
40)	2,4,6-Trichlorophenol	12.32	196	22032	512.86 ng/m	l 99
41)	2,4,5-Trichlorophenol	12.39	196	23801	505.99 ng/m	1 97
44)	2-Chloronaphthalene	12.61	127	11453	191.12 ng/m	l 99
45)	2-Nitroaniline	12.81	65	10706	184.62 ng/m	l 95
46)	Acenaphthylene	13.28	152	40031	189.20 ng/m	l 99
47)	Dimethyl Phthalate	13.13	163	31754	189.91 ng/m	l 98
48)	2,6-Dinitrotoluene	13.22	165	7661	196.13 ng/m	l 78
49)	Acenaphthene	13.57	154	23174	186.58 ng/m	l 99
50)	3-Nitroaniline	13.48	138	7470	173.09 ng/m	l 91
51)	2,4-Dinitrophenol	13.67	184	1315	935.03 ng/m	1# 64
52)	Dibenzofuran	13.85	168	38720	190.95 ng/m	l 97
53)	4-Nitrophenol	13.85	109	7985	357.18 ng/m	l# 11
54)	2,4-Dinitrotoluene	13.87	165	9509	189.49 ng/m	1 82
55)	2,3,4,6-Tetrachlorophenol	14.08	232	14233	425.89 ng/m	l 98
56)	Fluorene	14.41	166	26152	176.35 ng/m	l 98
57)	4-Chlorophenyl Phenyl Ethe	14.43	204	13940	189.04 ng/m	l 96
	Diethyl Phthalate	14.28	149	29314	175.48 ng/m	1 99
59)	4-Nitroaniline	14.48	138	7350	161.33 ng/m	l 90
60)	2-Methyl-4,6-dinitrophenol	14.54	198	8071	343.07 ng/m	l 94
	N-Nitrosodiphenylamine	14.64	169	19051	183.42 ng/m	l 97
	Azobenzene	14.69	77	34212	173.99 ng/m	l 98
65)	4-Bromophenyl Phenyl Ether	15.23	248	8175	203.80 ng/m	l 94
66)	Hexachlorobenzene	15.29	284	9228	208.27 ng/m	l 98 ∤.,
68)	Pentachlorophenol	15.65	266	4229	864.85 ng/m	1 96 W
•	Phenanthrene	15.97	178	41656	193.62 ng/m	l 98औ [™] `
,	Anthracene	16.06	178	41343	192.38 ng/m	l 98
71)	Carbazole	16.35	167	37403	185.62 ng/m	l 99
72)	Di-n-butyl Phthalate	16.97	149	48222	181.90 ng/m	1 99
	Fluoranthene	17.91	202	42955		1 99
75)	Benzidine		184	57167	562.23 ng/m	
	Pyrene	18.28	202	44303	188.88 ng/m	
78)	Butyl Benzyl Phthalate	19.43		21002	171.13 ng/m	

^{(#) =} qualifier out of range (m) = manual integration
0412F004.D 0412BNLL.M Wed Apr 13 08:35:09 2005

TUPPE

Quantitation Report (QT Reviewed)

Data File : J:\MS10\DATA\041205\0412F004.D Vial: 4

Operator: DHaderly

Acq On : 12 Apr 2005 12:46 pm Operator: DHade Sample : 8270LL @ 0.2/0.5ppm | SVM19-15E | KWG050 Inst : MS10 Misc : SVM\W0505864\4-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:08 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
79)	3,3'-Dichlorobenzidine	20.40	252	34391	506.53 ng/m]	. 94
	Benz (a) anthracene	20.41	228	36320	193.75 ng/m]	
81)	Chrysene	20.48	228	33179	188.08 ng/m]	
82)	Bis(2-ethylhexyl) Phthalat	20.61	149	26766	167.62 ng/ml	98
84)	Di-n-octyl Phthalate	22.39	149	43300	170.54 ng/ml	100
85)	Benzo(b)fluoranthene	23.28	252	31218	195.46 ng/ml	. 99
86)	Benzo(k)fluoranthene	23.37	252	29826	191.46 ng/ml	. 97
	Benzo(a)pyrene	24.25	252	28644	191.93 ng/ml	. 99
88)	Indeno(1,2,3-cd)pyrene	27.02	276	23647	190.36 ng/ml	. 97
89)	Dibenz(a,h)anthracene	27.10	278	23134	192.95 ng/ml	. 97
90)	Benzo(g,h,i)perylene	27.54	276	24442	196.93 ng/ml	. 97

(#) = qualifier out of range (m) = manual integration 0412F004.D 0412BNLL.M Wed Apr 13 08:35:09 2005

Page 3

29.00

27.00 28.00

25.00 26.00

24.00

23.00

22.00

15.00 16.00 17.00 18.00 19.00 20.00 21.00

(QT Reviewed)

J:\MS10\DATA\041205\0412F004.D Data File

Vial: Operator: Multiplr Inst KWG050 SVM19-15E 12:46 pm 8270LL @ 0.2/0.5ppm | SVM\W0505864\4-ICAL.H 12 Apr 2005 Acq On Sample Misc

MS Integration Params: RTEINT.P Quant Time:

6:21 2005 13 Apr Method

0412BNLL.RES

File:

Integrator)

DHaderly

MS10 1.00

> Results (RTE Quant J:\MS10\METHODS\BNA\0412BNLL.M 8270LL ICAL

2005

13 06:36:18

Wed Apr

Last Update

Title

T.enely1eq(i,n,g)osned Dibengen 14 And Schill Schlick Free, T Perylene-d12,1 3enzo(a)pyrene,TC T, AND THE SUM (M) CASTIBLE Di-n-octyl Phthalate, TC tolg-se,s T,etslantid (lyxenlyns-2)sig I(L) The Chrysene-d12,1 Butyl Benzyl Phthalate, T Z,41b-lynenq1eT TIC: 0412F004.D T,enibizne Genzive Fluoranthene, TC Di-n-butyl Phthalate,T Carbazole, T I,01b-enerdfrene-d10,I T, Teth Ether Mensyl HEther, T T. draing the August 20.5 S. T. amenting the August 20.5 S. Amenting the August 20.5 S. T. amenting the August 20.5 S. T. am I,01b-enenthqaneo/ Calibration T, lonendy (Time In 2) T, enotonous — Tophoron I. S. Abid, iz-chloroethoxy, methyalic shoronous Abid, iz-chloroethoxy and the Tophoroethox II. Tophoroethox III. Tophoroe Naphthalene-d8,1 Initial T. harti∃ (lyqoTiquesharanasha T, lonardoroting Thymaeonomas Sizi OT, and Sizing Hopping Tests Sizing Miss T, and sizing dortand MOVS mass 1,4-Dichlorobenzene-d4,1 Response via 2-Fluorophenol, S T,enimstyrtamine,T Abundance 450000 400000 200000 500000 250000 350000 000001 30000 150000 14 -

0412BNLL.M Ω. 0412F004

2005 :35:10 08 13 Apr Wed

10.00 11.00 12.00 13.00 14.00

000

800

7.00

00.9

200

Time-->

50000

Data File : J:\MS10\DATA\041205\0412F004.D

Vial: 4

Acq On : 12 Apr 2005 12:46 pm Operator: DHaderly

Sample : 8270LL @ 0.2/0.5ppm | SVM19-15E | KWG050 Inst : MS10 Misc : SVM\W0505864\4-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 5:59 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Data File : J:\MS10\DATA\041205\0412F004.D Vial: 4

Acq On : 12 Apr 2005 12:46 pm Operator: DHaderly

Sample : 8270LL @ 0.2/0.5ppm | SVM19-15E | KWG050 Inst : MS10 Misc : SVM\W0505864\4-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:02 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Multiple Level Calibration

0412F004.D 0412BNLL.M

Wed Apr 13 06:02:15 2005

Data File : J:\MS10\DATA\041205\0412F004.D

Vial: 4

Acq On : 12 Apr 2005 12:46 pm Operator: DHaderly

Sample : 8270LL @ 0.2/0.5ppm | SVM19-15E | KWG050 Inst : MS10 Misc : SVM\W0505864\4-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:02 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Data File : J:\MS10\DATA\041205\0412F004.D

Vial: 4

Acq On : 12 Apr 2005 12:46 pm Ope

Onanatan 1

Operator: DHaderly

Sample : 8270LL @ 0.2/0.5ppm | SVM19-15E | KWG050 Inst Misc : SVM\W0505864\4-ICAL.H Mults

Inst : MS10 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:02 2005

Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Data File : J:\MS10\DATA\041205\0412F005.D Vial: 5

Acq On : 12 Apr 2005 1:26 pm Operator: DHaderly

: 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Sample Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:09 2005 Quant Results File: 0412BNLL.RES

Quant Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc Units De	v(Min)
1) 1,4-Dichlorobenzene-d4	8.75	152	66142	1000.00 ng/ml	0.00
23) Naphthalene-d8	10.69	136	224142	1000.00 ng/ml	0.00
37) Acenaphthene-d10	13.52	164	117402	1000.00 ng/ml	0.00
63) Phenanthrene-d10	15.94	188	186645	1000.00 ng/ml	
74) Chrysene-d12	20.43		152635	1000.00 ng/ml	
83) Perylene-d12	24.42	264	111866	1000.00 ng/ml	0.00
System Monitoring Compounds					
4) 2-Fluorophenol	6.98	112	36684	462.37 ng/ml	0.00
Spiked Amount 3750.000	Range 38	- 110	Recove		
7) Phenol-d6	8.27	99	44698	$\frac{1}{484.53}$ ng/ml	-0.01
Spiked Amount 3750.000	Range 43	- 128	Recove	ry = 12.92	% #
21) Nitrobenzene-d5	9.58	82	44435	492.55 ng/ml	0.00
	Range 30	- 139	Recove	= 19.70	%#
42) 2-Fluorobiphenyl	12.44	172	76128	530.77 ng/ml	0.00
	Range 37	- 126	Recove	= 21.23	%#
64) 2,4,6-Tribromophenol	14.81		10304	.	0.00
	Range 38		Recove		
77) Terphenyl-d14		244		J,	
Spiked Amount 2500.000	Range 54	- 158	Recove	= 19.70	8#
Target Compounds				Q	value
N-Nitrosodimethylamine	5.35	42	35763m	535.64 ng/ml	
3) Pyridine	5.41	79	36984m	374.29 ng/ml	
6) Bis(2-chloroethyl) Ether		93	36155	439.25 ng/ml	97
8) Phenol	8.29	94	85549	927.23 ng/ml	83
9) Aniline	8.28	93	58202	479.34 ng/ml	91
10) 2-Chlorophenol	8.45	128	70414	956.95 ng/ml	98 A
11) 1,3-Dichlorobenzene	8.66	146	43487	481.82 ng/ml	99
12) 1,4-Dichlorobenzene	8.77	146	45138	481.65 ng/ml	98 HM
13) 1,2-Dichlorobenzene	8.98	146	40754	489.32 ng/ml	98
14) Benzyl Alcohol	8.97	108	23758	460.76 ng/ml	99
15) Bis(2-chloroisopropyl) E		45	69494	464.96 ng/ml	92
16) 2-Methylphenol	9.17	107	54258	986.85 ng/ml	98
18) Hexachloroethane	9.48	117	20485	497.89 ng/ml	92
19) N-Nitrosodi-n-propylamin		70	29804	J ,	99
20) 4-Methylphenol	9.40	107	78549	_ ·	97
22) Nitrobenzene 24) Isophorone	9.61	77	45151		96
-	9.99	82	69432	- .	97
25) 2-Nitrophenol26) 2,4-Dimethylphenol	10.10			3 ,	96
27) Bis(2-chloroethoxy) metha	10.21	122 93	56650		99
2., Dib(2 chiotoechoxy) mecha		عن 	45433 	457.37 ng/ml	99

Data File : J:\MS10\DATA\041205\0412F005.D Vial: 5

Acq On : 12 Apr 2005 1:26 pm Operator: DHade Sample : 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00 Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:09 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Wed Apr 13 05:58:48 2005

Response via: Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc U	nit	Qvalue
28)	2,4-Dichlorophenol	10.50	162	62396	1008.03	na/ml	98
	Benzoic Acid	10.39	122	16962	578.69		
30)	1,2,4-Trichlorobenzene	10.60	180	41302	536.72		
	Naphthalene	10.72	128	110598	512.62		
32)	4-Chloroaniline	10.84	127	49915	507.65		
33)	Hexachlorobutadiene	10.92	225	27527	601.96		
35)	4-Chloro-3-methylphenol	11.66	107	60939	954.11		
36)	2-Methylnaphthalene	11.83	141	61973	507.62		
39)	Hexachlorocyclopentadiene	12.08	237	13923	423.69		
40)	2,4,6-Trichlorophenol	12.32	196	45549	1067.40		
41)	2,4,5-Trichlorophenol	12.38	196	50244	1075.30		99
44)	2-Chloronaphthalene	12.62	127	30306	509.12		98
45)	2-Nitroaniline	12.81	65	28592	496.36		
46)	Acenaphthylene	13.28	152	104092	495.27		
47)	Dimethyl Phthalate	13.13	163	82884	499.02		99
48)	2,6-Dinitrotoluene	13.22	165	20517	528.78		85
49)	Acenaphthene	13.57	154	61161	495.73		97
50)	3-Nitroaniline	13.48	138	19834	462.65		98
51)	2,4-Dinitrophenol	13.67	184	6279	1183.07		79
	Dibenzofuran	13.85	168	97798	485.52		93
	4-Nitrophenol	13.85	109	18258	822.18		
	2,4-Dinitrotoluene	13.87	165	24031	482.09		87
55)	2,3,4,6-Tetrachlorophenol	14.08	232	31703	955.00		94
	Fluorene	14.42	166	71197	483.32		98
57)	4-Chlorophenyl Phenyl Ethe	14.44	204	37982	518.53		96
	Diethyl Phthalate	14.28	149	75957	457.73		98
	4-Nitroaniline	14.48	138	18846m	416.44		
	2-Methyl-4,6-dinitrophenol	14.54	198	21300	911.45	ng/ml	94
	N-Nitrosodiphenylamine	14.64	169	46905	454.62	ng/ml	98 4/1
	Azobenzene	14.69	77	89050	455.91	ng/ml	98 '`
	4-Bromophenyl Phenyl Ether	15.23	248	21301	533.07	ng/ml	99
	Hexachlorobenzene	15.30	284	23873	540.88	ng/ml	97
	Pentachlorophenol	15.65	266	11402	1160.19		95
	Phenanthrene	15.97	178	102641	478.93		99
	Anthracene	16.06	178	106515	497.57	ng/ml	99
	Carbazole	16.35		92806	462.34	ng/ml	99
	Di-n-butyl Phthalate	16.97	149	124010	469.58	ng/ml	98
	Fluoranthene	17.91		111232	520.96	ng/ml	99
	Benzidine	18.17		102658			97
	Pyrene	18.27	202	114477		ng/ml	98
78)	Butyl Benzyl Phthalate	19.42	149		430.57		

^{(#) =} qualifier out of range (m) = manual integration 0412F005.D 0412BNLL.M Wed Apr 13 08:35:11 2005

Vial: 5

Data File : J:\MS10\DATA\041205\0412F005.D

Acq On : 12 Apr 2005 1:26 pm Operator: DHaderly

Sample : 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:09 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
79)	3,3'-Dichlorobenzidine	20.41	252	70580	995.18 ng/m]	99
	Benz (a) anthracene	20.41	228	97071	495.75 ng/m	
81)	Chrysene	20.48	228	85628	464.69 ng/m]	
82)	Bis(2-ethylhexyl) Phthalat	20.61	149	68097	408.27 ng/m]	99
84)	Di-n-octyl Phthalate	22.39	149	113182	446.56 ng/m]	100
85)	Benzo(b)fluoranthene	23.28	252	78578	492.87 ng/m]	99
86)	Benzo(k)fluoranthene	23.38	252	78487	504.72 ng/m]	99
	Benzo(a)pyrene	24.25	252	74356	499.11 ng/m]	99
	Indeno(1,2,3-cd)pyrene	27.02	276	64001	516.12 ng/ml	96
89)	Dibenz(a,h)anthracene	27.10	278	62269	520.27 ng/ml	96
90)	Benzo(g,h,i)perylene	27.55	276	66040	533.03 ng/m]	98

24/4/6

^{(#) =} qualifier out of range (m) = manual integration 0412F005.D 0412BNLL.M Wed Apr 13 08:35:11 2005

(QT Reviewed)

5 DHaderly

Operator: Vial:

1.00

Multiplr:

MS10

Inst KWG050 SVM19-15F J:\MS10\DATA\041205\0412F005.D 1:26 pm 12 Apr 2005 Data File Acq On Sample

8270LL @ 0.5/1.0ppm | SVM\W0505864\5-ICAL.H Misc

MS Integration Params: RTEINT.P 6:20 2005 Quant Time: Apr 13

Quant Results File: 0412BNLL.RES

Integrator)

J:\MS10\METHODS\BNA\0412BNLL.M (RTE 8270LL ICAL Method Title

2005 Wed Apr 13 06:36:18 Calibration Initial Response via Last Update

0412BNLL.M 0412F005.D

:35:12 13 AprWed

2005

Data File : J:\MS10\DATA\041205\0412F005.D

Vial: 5

Acq On : 12 Apr 2005 1:26 pm Operator: DHaderly

Sample : 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 5:59 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Data File : J:\MS10\DATA\041205\0412F005.D

Vial: 5

Acq On : 12 Apr 2005 1:26 pm Operator: DHaderly

Sample : 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:03 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Data File : J:\MS10\DATA\041205\0412F005.D

Vial: 5

Operator: DHaderly : 12 Apr 2005 1:26 pm Sample

: 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst

: MS10

: SVM\W0505864\5-ICAL.H

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:03 2005

Quant Results File: temp.res

: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) Method

Title : 8270LL ICAL

Misc

Last Update : Wed Apr 13 05:58:48 2005 Response via: Multiple Level Calibration

= HINK

Data File : J:\MS10\DATA\041205\0412F005.D

Vial: 5

Acq On : 12 Apr 2005 1:26 pm Operator: DHaderly

Sample : 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:03 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Vial: 5

Data File : J:\MS10\DATA\041205\0412F005.D

Acq On : 12 Apr 2005 1:26 pm Operator: DHaderly

Sample : 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:03 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Vial: 5

Data File : J:\MS10\DATA\041205\0412F005.D

Acq On : 12 Apr 2005 1:26 pm Operator: DHaderly

Sample : 8270LL @ 0.5/1.0ppm | SVM19-15F | KWG050 Inst : MS10 Misc : SVM\W0505864\5-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:04 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Data File : J:\MS10\DATA\041205\0412F006.D

Acq On : 12 Apr 2005 2:05 pm Operator: DHade Sample : 8270LL @ 1.0/2.0ppm | SVM19-15G | KWG050 Inst : MS10 Misc : SVM\W0505864\6-ICAL.H Multiplr: 1.00 Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:10 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-Dichlorobenzene-d4	8.74	152	66218	1000.00 ng/ml	0.00
23) Naphthalene-d8	10.69	136	228516	1000.00 ng/ml	0.00
37) Acenaphthene-d10	13.51	164	116234	1000.00 ng/ml	-0.01
63) Phenanthrene-d10	15.93	188	184831	1000.00 ng/ml	-0.01
74) Chrysene-d12	20.43	240	142296	1000.00 ng/ml	0.00
83) Perylene-d12	24.42	264	111329	1000.00 ng/ml	0.00
System Monitoring Compounds					
4) 2-Fluorophenol	6.97	112	75701	953.05 ng/ml	0.00
Spiked Amount 3750.000	Range 38				
7) Phenol-d6	8.27		91216	<u>.</u>	-0.01
Spiked Amount 3750.000	Range 43	- 128	Recove		
21) Nitrobenzene-d5	9.58	82	90425	1001.19 ng/ml	0.00
Spiked Amount 2500.000	Range 30	- 139	Recove		
42) 2-Fluorobiphenyl	12.44	172	153292	1079.51 ng/ml	0.00
Spiked Amount 2500.000	Range 37	- 126	Recove		
64) 2,4,6-Tribromophenol	14.81	330	22767	1108.10 ng/ml	-0.01
Spiked Amount 3750.000	Range 38	- 157	Recove		#
77) Terphenyl-d14	18.57	244	132901	1023.56 ng/ml	-0.01
Spiked Amount 2500.000	Range 54	- 158	Recove	= 40.94%	#
Target Compounds				Ov	alue
2) N-Nitrosodimethylamine	5.35	42	69467	1039.24 ng/ml	96
3) Pyridine	5.40	79	76798	776.32 ng/ml	95
6) Bis(2-chloroethyl) Ether		93	78187	948.80 ng/ml	96
8) Phenol	8.29	94	181383	1963.67 ng/ml	87
9) Aniline	8.28	93	121758	1001.63 ng/ml#	82 🐒
10) 2-Chlorophenol	8.46	128	151265	2053.38 ng/ml	98
11) 1,3-Dichlorobenzene	8.66	146	91825	1016.22 ng/ml	الأن 100 الم
12) 1,4-Dichlorobenzene	8.77	146	95662	1019.59 ng/ml	99
13) 1,2-Dichlorobenzene	8.99	146	88416	1060.36 ng/ml	97
14) Benzyl Alcohol	8.98	108	52550	1017.98 ng/ml	95
15) Bis(2-chloroisopropyl) E	th 9.17	45	147066	982.83 ng/ml	91
16) 2-Methylphenol	9.17	107	113670	2065.06 ng/ml	97
18) Hexachloroethane	9.49	117	42097	1022.00 ng/ml	99
19) N-Nitrosodi-n-propylamin	e 9.37	70	59755	984.49 ng/ml	98
20) 4-Methylphenol	9.41	107	166829		97
22) Nitrobenzene	9.61	77	94724	1000.06 ng/ml	96
24) Isophorone	9.99	82	138735	936.96 ng/ml	99
25) 2-Nitrophenol	10.10	139	90206		93
26) 2,4-Dimethylphenol	10.21	122	124849	2095.74 ng/ml	99
27) Bis(2-chloroethoxy)metha:	ne 10.35	93	94632	934.42 ng/ml	98
///					

Data File : J:\MS10\DATA\041205\0412F006.D Vial: 6

Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:10 2005

Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99		Compound		QIon	Résponse	Conc U	nit	Qvalue
29) Benzoic Acid 30) 1,2,4-Trichlorobenzene 10.60 180 84741 1080.13 ng/ml 98 31) Naphthalene 10.72 128 220564 1002.73 ng/ml 99 32) 4-Chloroaniline 10.84 127 105890 1056.32 ng/ml 98 33) Hexachlorobutadiene 10.92 225 54224 1163.07 ng/ml 99 35) 4-Chloro-3-methylphenol 11.67 107 129889 1994.73 ng/ml 99 36) 2-Methylnaphthalene 11.83 141 125929 1011.74 ng/ml 98 39) Hexachlorocyclopentadiene 12.08 237 35867 1102.43 ng/ml 99 40) 2,4,6-Trichlorophenol 12.31 196 96109 2274.85 ng/ml 99 41) 2,4,5-Trichlorophenol 12.31 196 96109 2274.85 ng/ml 99 41) 2,4,5-Trichlorophenol 12.38 196 103527 2237.90 ng/ml 99 41) 2,4,5-Trichlorophenol 12.38 196 103527 2237.90 ng/ml 99 42) 2-Chloronaphthalene 12.62 127 60968 1034.51 ng/ml 97 45) 2-Nitroaniline 12.81 65 58200 1020.51 ng/ml 82 46) Acenaphthylene 13.28 152 204439 982.49 ng/ml 100 47) Dimethyl Phthalate 13.13 163 169586 1031.28 ng/ml 99 48) 2,6-Dinitrotoluene 13.22 165 41180 1071.98 ng/ml 99 48) 2,6-Dinitrotoluene 13.57 154 122502 1002.90 ng/ml 99 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 51) 2,4-Dinitrotoluene 13.85 109 45416 2065.69 ng/ml# 71 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 99 59) 4-Nitroaniline 14.43 129 149 157426 988.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 38855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.48 138 38855 889.52 ng/ml 99 61) N-Nitrosodiphenylamine 14.49 148 138 38855 889.52 ng/ml 99 61) N-Nitrosodiphenylamine 14.40 166 147380 1010.55 ng/ml 99 62) Azobenzene 14.41 166 147380 1010.55 ng/ml 99 64) Acenaphthylene 15.50 284 46981 1074.88 ng/ml 99 65) 4-Bromophenyl Phenyl Ether 15.23 248 46981 1074.88 ng/ml 99 66) Hexachlorophenol 15.66 266 32744 2059.24 ng/ml 98 67) Phenanthrene 15.97 178 215035 1014.36 ng/ml 99 68) Phenanthrene 15.97 178 215035 1014.36 ng/ml 98 69) Phenanthrene 15.97 178 215035 1014.36 ng/ml 90 70) Anthracene 16.06 178 215035 1014.36 ng/ml 90 71 1027bacch	28)	2,4-Dichlorophenol	10.50	162	137730	2182.49	ng/ml	. 96
30) 1,2,4-Trichlorobenzene			10.43	122				
31) Naphthalene	30)	1,2,4-Trichlorobenzene	10.60	180				
32) 4-Chloroaniline	31)	Naphthalene	10.72	128	220564			
33) Hexachlorobutadiene 10.92 225 54224 1163.07 ng/ml 99 35) 4-Chloro-3-methylphenol 11.67 107 129889 1994.73 ng/ml 99 36) 2-Methylnaphthalene 11.83 141 125929 1011.74 ng/ml 98 39) Hexachlorocyclopentadiene 12.08 237 35867 1102.43 ng/ml 99 40) 2,4,6-Trichlorophenol 12.31 196 96109 2274.85 ng/ml 99 41) 2,4,5-Trichlorophenol 12.38 196 103527 2237.90 ng/ml 99 44) 2-Chloronaphthalene 12.62 127 60968 1034.51 ng/ml 97 45) 2-Nitroaniline 12.81 65 58200 1020.51 ng/ml 82 46) Acenaphthylene 13.28 152 204439 982.49 ng/ml 100 47) Dimethyl Phthalate 13.13 163 169586 1031.28 ng/ml 99 48) 2,6-Dinitrotoluene 13.22 165 41180 1071.98 ng/ml 99 49) Acenaphthene 13.49 138 41660 981.53 ng/ml 98 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 51) 2,4-Dinitrophenol 13.85 109 45416 2065.69 ng/ml 96 53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml 71 54) 2,4-Dinitrotoluene 13.85 109 45416 2065.69 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 98 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 50) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 99 50) Azobenzene 14.70 77 181533 938.73 ng/ml 98 61) N-Nitrosodiphenylamine 14.48 138 39855 889.52 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 98 63) Phenanthrene 15.97 178 215942 1017.50 ng/ml 99 64) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 65) Phenanthrene 16.06 178 215035 1014.36 ng/ml 90 67) Carbazole 16.35 167 198361 997.88 ng/ml 98 67) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99	32)		10.84	127	105890			
35) 4-Chloro-3-methylphenol 11.67 107 129889 1994.73 ng/ml 99 36) 2-Methylnaphthalene 11.83 141 125929 1011.74 ng/ml 98 39) Hexachlorocyclopentadiene 12.08 237 35867 1102.43 ng/ml 99 40) 2,4,6-Trichlorophenol 12.31 196 96109 2274.85 ng/ml 99 41) 2,4,5-Trichlorophenol 12.38 196 103527 2237.90 ng/ml 99 42) 2-Chloronaphthalene 12.62 127 60968 1034.51 ng/ml 97 45) 2-Nitroaniline 12.81 65 58200 1020.51 ng/ml 82 46) Acenaphthylene 13.28 152 204439 982.49 ng/ml 100 47) Dimethyl Phthalate 13.13 163 169586 1031.28 ng/ml 99 48) 2,6-Dinitrotoluene 13.22 165 41180 1071.98 ng/ml 90 49) Acenaphthene 13.57 154 122502 1002.90 ng/ml 99 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 52) Dibenzofuran 13.86 168 204346 1024.68 ng/ml 96 53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 99 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 15.30 284 46981 1074.88 ng/ml 99 63) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 64) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 65) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 67) Phenanthrene 16.06 178 215035 1014.36 ng/ml 99 67) Anthracene 16.06 178 215035 1014.36 ng/ml 99 67) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			10.92	225	54224			
36) 2-Methylnaphthalene	35)	4-Chloro-3-methylphenol	11.67	107	129889			
39) Hexachlorocyclopentadiene 12.08 237 35867 1102.43 ng/ml 99 40) 2,4,6-Trichlorophenol 12.31 196 96109 2274.85 ng/ml 99 41) 2,4,5-Trichlorophenol 12.38 196 103527 2237.90 ng/ml 99 44) 2-Chloronaphthalene 12.62 127 60968 1034.51 ng/ml 97 45) 2-Nitroaniline 12.81 65 58200 1020.51 ng/ml 82 46) Acenaphthylene 13.28 152 204439 982.49 ng/ml 100 47) Dimethyl Phthalate 13.13 163 169586 1031.28 ng/ml 99 48) 2,6-Dinitrotoluene 13.22 165 41180 1071.98 ng/ml 90 49) Acenaphthene 13.57 154 122502 1002.90 ng/ml 99 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 52) Dibenzofuran 13.86 168 204346 1024.68 ng/ml 96 53 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml# 71 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 99 59 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 59 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 99 62) Azobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 69) Phenanthrene 16.06 178 215035 1014.36 ng/ml 100 710 Carbazole 16.35 167 198361 997.88 ng/ml 98 72 Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99 72 20 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			11.83	141	125929			
40) 2,4,6-Trichlorophenol 12.31 196 96109 2274.85 ng/ml 99 41) 2,4,5-Trichlorophenol 12.38 196 103527 2237.90 ng/ml 99 44) 2-Chloronaphthalene 12.62 127 60968 1034.51 ng/ml 97 45) 2-Nitroaniline 12.81 65 58200 1020.51 ng/ml 82 46) Acenaphthylene 13.28 152 204439 982.49 ng/ml 100 47) Dimethyl Phthalate 13.13 163 169586 1031.28 ng/ml 99 48) 2,6-Dinitrotoluene 13.22 165 41180 1071.98 ng/ml 99 49) Acenaphthene 13.57 154 122502 1002.90 ng/ml 99 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 52) Dibenzofuran 13.86 168 204346 1024.68 ng/ml 96 53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml# 71 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 99 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 15.30 284 46981 1074.88 ng/ml 99 66) Hexachlorophenol 15.66 266 32744 2059.24 ng/ml 98 67) Anthracene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215942 1017.50 ng/ml 98 71 Carbazole 16.35 167 198361 997.88 ng/ml 99 72 Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			12.08	237	35867			
44) 2-Chloronaphthalene	40)	2,4,6-Trichlorophenol	12.31	196	96109			
44) 2-Chloronaphthalene	41)	2,4,5-Trichlorophenol	12.38	196	103527	2237.90	ng/ml	. 99
45) 2-Nitroaniline	44)	2-Chloronaphthalene	12.62	127	60968			
47) Dimethyl Phthalate 13.13 163 169586 1031.28 ng/ml 99 48) 2,6-Dinitrotoluene 13.22 165 41180 1071.98 ng/ml 90 49) Acenaphthene 13.57 154 122502 1002.90 ng/ml 99 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 52) Dibenzofuran 13.86 168 204346 1024.68 ng/ml 96 53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml# 71 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 61) N-Nitrosodiphenylamine 14.63 169 10619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 99 66) Hexachlorophenol 15.66 266 32744 2059.24 ng/ml 98 67) Anthracene 15.97 178 215942 1017.50 ng/ml 98 68) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 67) Carbazole 16.35 167 198361 997.88 ng/ml 98 67) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			12.81	65	58200			
47) Dimethyl Phthalate 48) 2,6-Dinitrotoluene 13.22 165 41180 1071.98 ng/ml 90 49) Acenaphthene 13.57 154 122502 1002.90 ng/ml 99 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 52) Dibenzofuran 13.86 168 204346 1024.68 ng/ml 96 53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml 97 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 99 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 99 63 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 99 66) Hexachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml		the state of the s	13.28	152	204439	982.49	ng/ml	100
49) Acenaphthene 13.57 154 122502 1002.90 ng/ml 99 50) 3-Nitroaniline 13.49 138 41660 981.53 ng/ml 98 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 52) Dibenzofuran 13.86 168 204346 1024.68 ng/ml 96 53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml 71 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 59) 4-Nitrosodiphenylamine 14.54 198 53892 2329.27 ng/ml 99 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			13.13	163				
50) 3-Nitroaniline	48)	2,6-Dinitrotoluene	13.22	165	41180	1071.98	ng/ml	. 90
50) 3-Nitroaniline 51) 2,4-Dinitrophenol 13.67 184 26263 2172.51 ng/ml 93 52) Dibenzofuran 13.86 168 204346 1024.68 ng/ml 96 53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml# 71 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 88) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 99 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 99 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 98 71) Carbazole 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			13.57	154	122502	1002.90	ng/ml	. 99
51) 2,4-Dinitrophenol			13.49	138	41660			
53) 4-Nitrophenol 13.85 109 45416 2065.69 ng/ml# 71 54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.30 284 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			13.67	184				
54) 2,4-Dinitrotoluene 13.88 165 52105 1055.79 ng/ml 98 55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			13.86	168	204346	1024.68	ng/ml	. 96
55) 2,3,4,6-Tetrachlorophenol 14.08 232 71367 2171.41 ng/ml 88 56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			13.85	109	45416			
56) Fluorene 14.41 166 147380 1010.55 ng/ml 100 57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			13.88	165	52105	1055.79	ng/ml	. 98
57) 4-Chlorophenyl Phenyl Ethe 14.43 204 76274 1051.77 ng/ml 95 58) Diethyl Phthalate 14.29 149 157426 958.21 ng/ml 99 59) 4-Nitroaniline 14.48 138 39855 889.52 ng/ml 99 60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			14.08	232	71367	2171.41	ng/ml	8.8
58) Diethyl Phthalate 59) 4-Nitroaniline 60) 2-Methyl-4,6-dinitrophenol 61) N-Nitrosodiphenylamine 62) Azobenzene 65) 4-Bromophenyl Phenyl Ether 66) Hexachlorobenzene 67) Pentachlorophenol 68) Pentachlorophenol 69) Phenanthrene 69) Phenanthrene 69) Phenanthrene 69) Phenanthrene 60) Anthracene 60) 2-Methyl-4,6-dinitrophenol 61, N-Nitrosodiphenylamine 61, N-Nitrosodiphenylamine 62, Azobenzene 63, Azobenzene 64,70 65,30 66,4-Bromophenyl Phenyl Ether 67) Anthracene 68) Pentachlorophenol 69) Phenanthrene				166	147380	1010.55	ng/ml	100
59) 4-Nitroaniline 60) 2-Methyl-4,6-dinitrophenol 61) N-Nitrosodiphenylamine 62) Azobenzene 65) 4-Bromophenyl Phenyl Ether 66) Hexachlorobenzene 66) Hexachlorophenol 67) Phenanthrene 68) Pentachlorophenol 69) Phenanthrene 69) Phenanthrene 69) Phenanthrene 69) Phenanthrene 60) Anthracene 60) 2-Methyl-4,6-dinitrophenol 61,54 198 62,3892 6329.27 ng/ml 63,73 ng/ml 64,70 65,77 66,287 67,888 67,889.52 ng/ml 68,985 68,990 69,100 61,990 61,990 62,10 ng/ml 63,990 64,48 65,1890 65,1890 66,1890 67,900 68,900 69,900 69,900 60,				204	76274	1051.77	ng/ml	95
60) 2-Methyl-4,6-dinitrophenol 14.54 198 53892 2329.27 ng/ml 98 61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			14.29	149	157426	958.21	ng/ml	99 💉
61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99				138	39855	889.52	ng/ml	, <i>U</i>
61) N-Nitrosodiphenylamine 14.63 169 100619 985.04 ng/ml 99 62) Azobenzene 14.70 77 181533 938.73 ng/ml 95 65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			14.54		53892	2329.27	ng/ml	98 414
65) 4-Bromophenyl Phenyl Ether 15.23 248 42587 1076.22 ng/ml 90 66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99			14.63	169	100619	985.04	ng/ml	99 ~
66) Hexachlorobenzene 15.30 284 46981 1074.88 ng/ml 91 68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99				77	181533			
68) Pentachlorophenol 15.66 266 32744 2059.24 ng/ml 98 69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99				248		1076.22	ng/ml	90
69) Phenanthrene 15.97 178 215942 1017.50 ng/ml 100 70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99				284	46981	1074.88	ng/ml	91
70) Anthracene 16.06 178 215035 1014.36 ng/ml 100 71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99				266	32744	2059.24	ng/ml	98
71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99					215942			
71) Carbazole 16.35 167 198361 997.88 ng/ml 98 72) Di-n-butyl Phthalate 16.97 149 251612 962.10 ng/ml 99	,		16.06	178	215035	1014.36	ng/ml	100
~~\ ~~~			16.35	167	198361	997.88	ng/ml	98
					251612			
		Fluoranthene	17.92	202	220724			
75) Benzidine 18.18 184 184911 1867.47 ng/ml 99			18.18					
76) Pyrene 18.28 202 223785 979.72 ng/ml 98						979.72	ng/ml	98
78) Butyl Benzyl Phthalate 19.42 149 106327 889.70 ng/ml 98	78)	Butyl Benzyl Phthalate	19.42	149	106327	889.70	ng/ml	98

(#) = qualifier out of range (m) = manual integration 0412F006.D 0412BNLL.M Wed Apr 17698:35:13 2005

Data File : J:\MS10\DATA\041205\0412F006.D

Vial: 6

Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:10 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
79)	3,3'-Dichlorobenzidine	20.41	252	133767	2023.17 ng/ml	 L 99
80)	Benz(a)anthracene	20.41	228	185808	1017.88 ng/m	
81)	Chrysene	20.50	228	167823	976.93 ng/ml	l 100
82)	Bis(2-ethylhexyl) Phthalat	20.62	149	138377	889.91 ng/ml	L 99
84)	Di-n-octyl Phthalate	22.40	149	216576	858.63 ng/m	L 100
85)	Benzo(b)fluoranthene	23.29	252	151223	953.11 ng/ml	L 99
86)	Benzo(k)fluoranthene	23.38	252	154922	1001.05 ng/ml	L 98
	Benzo(a)pyrene	24.25	252	149687	1009.60 ng/m	L 100
88)	Indeno(1,2,3-cd)pyrene	27.03	276	129924	1052.80 ng/m	L 98
89)	Dibenz(a,h)anthracene	27.10	278	124430	1044.65 ng/m	L 95
90)	Benzo(g,h,i)perylene	27.55	276	131841	1069.27 ng/m	L 97

(#) = qualifier out of range (m) = manual integration 0412F006.D 0412BNLL.M Wed Apr 13 08:35:13 2005

Reviewed)

TQ)

J:\MS10\DATA\041205\0412F006.D Data File Acq On

Operator: Inst KWG050 SVM19-15G 8270LL @ 1.0/2.0ppm Sample

SVM\W0505864\6-ICAL.H Misc

MS Integration Params: RTEINT.P 6:20 2005 Quant Time: Apr 13

0412BNLL.RES Quant Results File:

Integrator)

DHaderly

9

Vial

1.00

MS10

Multiplr

(RTE J:\MS10\METHODS\BNA\0412BNLL.M 8270LL ICAL 2005 Wed Apr 13 06:36:18 Last Update Method Title

0412BNLL.M 0412F006.D

Data File : J:\MS10\DATA\041205\0412F007.D

Operator: DHaderly

Acq On : 12 Apr 2005 2:45 pm Operator: DHade Sample : 8270LL @ 2.0/4.0ppm | SVM19-15H | KWG050 Inst : MS10 Misc : SVM\W0505864\7-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:11 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-Dichlorobenzene-d4	8.74	152	65400	1000.00 ng/ml	0.00
23) Naphthalene-d8	10.69	136	221157	1000.00 ng/ml	0.00
37) Acenaphthene-d10	13.52	164	119472	1000.00 ng/ml	0.00
63) Phenanthrene-d10	15.94	188	182653	1000.00 ng/ml	0.00
74) Chrysene-d12	20.43	240	146617	1000.00 ng/ml	0.00
83) Perylene-d12	24.42	264	110484	1000.00 ng/ml	0.00
System Monitoring Compounds					
4) 2-Fluorophenol	6.97	112	150746	1921.58 ng/ml	0.00
	Range 38	- 110	Recove		
7) Phenol-d6	8.28		187422	2054.71 ng/ml	0.00
		- 128	Recove	-	
21) Nitrobenzene-d5	9.58	82	184820	2071.93 ng/ml	0.00
		- 139	Recove		
42) 2-Fluorobiphenyl	12.44	172		2100.95 ng/ml	0.00
	_	- 126			
64) 2,4,6-Tribromophenol	14.82	330		2408.65 ng/ml	0.00
		- 157			
77) Terphenyl-d14	18.58	244		2073.64 ng/ml	0.00
Spiked Amount 2500.000	Range 54	- 158	Recove	= 82.95%	
Target Compounds				Qva	alue
N-Nitrosodimethylamine	5.34	42	138398	2096.37 ng/ml	100
3) Pyridine	5.38	79	147963	1514.41 ng/ml	100
6) Bis(2-chloroethyl) Ether		93	149140	1832.46 ng/ml	100
8) Phenol	8.30	94	363388	3983.28 ng/ml	100
9) Aniline	8.28	93	252055	2099.44 ng/ml	100
10) 2-Chlorophenol	8.46	128	289780	3982.88 ng/ml	100
11) 1,3-Dichlorobenzene	8.66	146	183491	2056.08 ng/ml	100
12) 1,4-Dichlorobenzene	8.77	146	191365	2065.13 ng/ml	100
13) 1,2-Dichlorobenzene	8.99	146	177453	2154.79 ng/ml	100
14) Benzyl Alcohol	8.98	108	103940	2038.67 ng/ml	100 ° V
	th 9.17	45	278647	1885.47 ng/ml	100 jint
16) 2-Methylphenol	9.17	107	217029	3992.12 ng/ml	100
18) Hexachloroethane	9.49	117	83910	2062.59 ng/ml	100
19) N-Nitrosodi-n-propylamine		70	120311	2006.97 ng/ml	100
20) 4-Methylphenol	9.41	107		4008.15 ng/ml	100
22) Nitrobenzene	9.61	77	190562	2037.04 ng/ml	100
24) Isophorone	10.00	82		1939.11 ng/ml	100
25) 2-Nitrophenol	10.10	139	174708	4215.55 ng/ml	100
26) 2,4-Dimethylphenol	10.22	122	232361	4030.25 ng/ml	100
27) Bis(2-chloroethoxy)methan				1902.15 ng/ml	100

(#) = qualifier out of range (m) = manual integration 0412F007.D 0412BNLL.M Wed Apr 13 08:35:14 2005

Vial: 7

Vial: 7

Data File : J:\MS10\DATA\041205\0412F007.D

Acq On : 12 Apr 2005 2:45 pm Operator: DHaderly

Sample : 8270LL @ 2.0/4.0ppm | SVM19-15H | KWG050 Inst : MS10 Misc : SVM\W0505864\7-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:11 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

_		Compound	R.T.	QIon	Response	Conc Uni	Lt Q	value	
	28)	2,4-Dichlorophenol	10.50	162	264730	4334.54 r	na/ml	100	
		Benzoic Acid	10.49		104168	3601.84 r		100	
	30)		10.60	180	174631	2299.97 r		100	
	31)		10.73	128	436302	2049.53 r		100	
	32)		10.85	127	218373	2250.90 r		100	
	33)	Hexachlorobutadiene	10.92	225	111727	2476.22 r		100	
	35)	4-Chloro-3-methylphenol	11.68	107	248734	3946.95 n		100	
	36)		11.83	141	263820	2190.12 n		100	
	39)		12.08	237	81969	2451.16 n		100	
	40)		12.32	196	194338	4475.22 n		100	
	41)		12.39	196	210820	4433.69 n		100	
	44)	2-Chloronaphthalene	12.62	127	128919	2128.22 n		100	
	45)	2-Nitroaniline	12.81	65	121584	2074.13 n		100	
	46)	Acenaphthylene	13.28	152	428501	2003.47 n		100	
	47)	Dimethyl Phthalate	13.13	163	349003	2064.83 n		100	
	48)	2,6-Dinitrotoluene	13.23	165	83368	2111.38 n		100	
	49)	Acenaphthene	13.57	154	256747	2044.97 n		100	
		3-Nitroaniline	13.50	138	86669	1986.63 n		100	
	51)	2,4-Dinitrophenol	13.68	184	69699	4128.53 n		100	
	52)	Dibenzofuran	13.86	168	422789	2062.59 n		100	
	53)	4-Nitrophenol	13.87	109	97577	4317.89 n		100	
	54)	2,4-Dinitrotoluene	13.89	165	107702	2123.20 n		100	
	55)	2,3,4,6-Tetrachlorophenol	14.08	232	148473	4395.00 n		100	
	56)	Fluorene	14.42	166	305926	2040.81 n		100	
	57)	4-Chlorophenyl Phenyl Ethe	14.44	204	156812	2103.72 n		100	
	58)		14.30	149	320021	1895.09 n	ng/ml	100	
	59)		14.50	138	83532	1813.81 n	ng/ml	100	
	60)		14.55	198	117513	4941.39 n		100	
	61)	← →	14.64	169	204861	1951.20 n	ng/ml	100	
	62)		14.70	77	356896	1795.54 n	ng/ml	100	
		4-Bromophenyl Phenyl Ether	15.24	248	89747	2295.05 n	ig/ml	100	A
		Hexachlorobenzene	15.30	284	99773	2309.92 n	ıg/ml	100	WHE
		Pentachlorophenol	15.66	266	81544	4200.90 n	ng/ml	100	MA
		Phenanthrene	15.98	178	440080	2098.34 n	ig/ml	100	
	70)	Anthracene	16.07	178	433693	2070.20 n	ng/ml	100	
		Carbazole	16.35	167	401103	2041.86 n	ig/ml	100	
	72)	Di-n-butyl Phthalate	16.97			2015.73 n		100	
		Fluoranthene				2217.30 n		100	
		Benzidine			407594	3995.10 n	ng/ml	100	
		Pyrene	18.29	202	471103	2001.68 n	ng/ml	100	
		Butyl Benzyl Phthalate	19.42	149	223850	1817.87 n	ıg/ml	100	
-									

Data File : J:\MS10\DATA\041205\0412F007.D

Vial: 7 Operator: DHaderly

Acq On : 12 Apr 2005 2:45 pm Sample : 8270LL @ 2.0/4.0ppm | SVM19-15H | KWG050 Inst : MS10 Misc : SVM\W0505864\7-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:11 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL
Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
79)	3,3'-Dichlorobenzidine	20.42	252	281427	4131.02 ng/m	l 100
80)	Benz (a) anthracene	20.42	228	390977	2078.70 ng/m	
81)	Chrysene	20.50	228	350927	1982.61 ng/m	
82)	Bis(2-ethylhexyl) Phthalat	20.62	149	291592	1819.97 ng/m	l 100
84)	Di-n-octyl Phthalate	22.40	149	459532	1835.78 ng/m	l 100
85)	Benzo(b)fluoranthene	23.31	252	319167	2026.98 ng/m	l 100
86)	Benzo(k)fluoranthene	23.40	252	316142	2058.42 ng/m	l 100
87)	Benzo(a)pyrene	24.27	252	315892	2146.91 ng/m	l 100
	Indeno(1,2,3-cd)pyrene	27.04	276	266922	2179.46 ng/m	l 100
89)	Dibenz(a,h)anthracene	27.12	278	260808	2206.36 ng/m	l 100
90)	Benzo(g,h,i)perylene	27.57	276	270409	2209.88 ng/ml	l 100

<u>Sylub</u>

(#) = qualifier out of range (m) = manual integration 0412F007.D 0412BNLL.M Wed Apr 13 08:35:14 2005

Page 3

(QT Reviewed)

SVM19-15H 2:45 pm 8270LL @ 2.0/4.0ppm 12 Apr 2005

Sample

Misc

SVM\W0505864\7-ICAL.H MS Integration Params: RTEINT.P Quant Time: Apr 13 6:19 2005 Method

0412BNLL.RES

DHaderly

Operator

Vial:

MS10 1.00

Multiplr

Inst

| KWG050

Quant Results File J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)
8270LL ICAL 2005 Wed Apr 13 06:36:18 Last Update Title

0412BNLL.M 0412F007.D

2005

:35:15

08

13

Apr

Wed

Data File : J:\MS10\DATA\041205\0412F008.D Vial: 8

Acq On : 12 Apr 2005 3:24 pm Operator: DHaderly

Sample : 8270LL @ 3.0/6.0ppm | SVM19-15I | KWG050 Inst : MS10 Misc : SVM\W0505864\8-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:12 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) 1,4-Dichlorobenzene-d4	8.74	152	67549	1000.00 ng/ml	0.00
23) Naphthalene-d8	10.70	136	217092	1000.00 ng/ml	0.00
37) Acenaphthene-d10	13.52	164	117159	1000.00 ng/ml	0.00
63) Phenanthrene-d10	15.94	188	187961	1000.00 ng/ml	0.00
74) Chrysene-d12	20.44		149473	1000.00 ng/ml	0.00
83) Perylene-d12	24.42	264	112203	1000.00 ng/ml	0.00
System Monitoring Compounds		•			
4) 2-Fluorophenol	6.97	112	228479	2819.80 ng/ml	0.00
Spiked Amount 3750.000	Range 38	- 110		= 75.19%	
7) Phenol-d6	8.28	99	273607	2904.13 ng/ml	0.00
		- 128			
21) Nitrobenzene-d5	9.59	82	274941	2984.18 ng/ml	0.00
		- 139	Recove	= 119.37%	
42) 2-Fluorobiphenyl	12.44	172	474053	3312.01 ng/ml	0.00
		- 126		ery = 132.48%#	
64) 2,4,6-Tribromophenol	14.83	330		3556.29 ng/ml	0.00
			Recove		
77) Terphenyl-d14	18.58			3093.52 ng/ml	0.00
Spiked Amount 2500.000	Range 54	- 158	Recove	ery = 123.74%	
Target Compounds				Qva	lue
N-Nitrosodimethylamine	5.35	42	215859	3165.68 ng/ml	99
3) Pyridine	5.38	79	231989	2298.88 ng/ml	92
6) Bis(2-chloroethyl) Ether	8.39	93	227687	2708.55 ng/ml	98
8) Phenol	8.31	94	533862	5665.76 ng/ml	100
9) Aniline	8.28	93	366435	2955.04 ng/ml#	86
10) 2-Chlorophenol	8.45	128	454590	6049.34 ng/ml	96
11) 1,3-Dichlorobenzene	8.66	146	285191	3093.99 ng/ml	90 .
12) 1,4-Dichlorobenzene	8.77	146	292299	3054.01 ng/ml	991146
13) 1,2-Dichlorobenzene	8.99	146	272115	3199.14 ng/ml	99
14) Benzyl Alcohol	8.99	108	157608	2992.96 ng/ml	99
15) Bis(2-chloroisopropyl) E		45	403815	2645.49 ng/ml	94
16) 2-Methylphenol	9.18	107	330939	5893.76 ng/ml	99
18) Hexachloroethane	9.49	117	131446	3128.28 ng/ml	95
19) N-Nitrosodi-n-propylamin		70	180411	2913.79 ng/ml	100
20) 4-Methylphenol	9.42	107		5969.90 ng/ml	99
22) Nitrobenzene	9.62	77		2939.10 ng/ml	98
24) Isophorone	10.01	82		2968.21 ng/ml	99
25) 2-Nitrophenol	10.11	139		6614.07 ng/ml	95
26) 2,4-Dimethylphenol	10.22			6296.62 ng/ml	98
27) Bis(2-chloroethoxy)metha	ne 10.36	93	278905	2898.91 ng/ml	99

^{(#) =} qualifier out of range (m) = manual integration 0412F008.D 0412BNLL.M Wed Apr 13 08:35:16 2005

Data File : J:\MS10\DATA\041205\0412F008.D Vial: 8

Acq On : 12 Apr 2005 3:24 pm Operator: DHaderly

Sample : 8270LL @ 3.0/6.0ppm | SVM19-15I | KWG050 Inst : MS10 Misc : SVM\W0505864\8-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:12 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc U	nit	Qvalue
28)	2,4-Dichlorophenol	10.51	162	400118	6673.97	na/ml	97
	Benzoic Acid	10.54	122	171491	6040.72		
30)		10.61	180	255313	3425.55		
31)	Naphthalene	10.73	128	662706	3171.35		
32)	4-Chloroaniline	10.85	127	321874	3379.87	<u> </u>	
33)		10.92	225	168089	3795.14		
35)		11.69	107	390685	6315.54		
36)		11.84	141	401224	3393.16		
39)		12.09	237	127020	3873.33		
40)		12.32	196	290828	6829.41		
41)		12.40	196	316759	6793.17		
44)	• • • • • • • • • • • • • • • • • • •	12.63	127	195634	3293.32		
45)		12.82	65	181266	3153.31		
46)	Acenaphthylene	13.28	152	645265	3076.51		
47)		13.14	163	516402	3115.54		
48)	2,6-Dinitrotoluene	13.23	165	124743	3221.62		
49)	Acenaphthene	13.57	154	372620	3026.49	<u> </u>	
50)	3-Nitroaniline	13.50	138	126916	2966.60		
51)	2,4-Dinitrophenol	13.68	184	123686	6547.39	ng/ml	76
52)	Dibenzofuran	13.87	168	624271	3105.65		
53)	4-Nitrophenol	13.88	109	158939	7172.08	ng/ml	# 70
54)	2,4-Dinitrotoluene	13.89	165	164976	3316.49	ng/ml	82
55)	2,3,4,6-Tetrachlorophenol	14.09	232	233701	7054.44	ng/ml	95
56)		14.42	166	453491	3084.93	ng/ml	99
57)	* * *	14.44	204	237313	3246.54	ng/ml	96
58)	•••	14.31	149	486971	2940.66		
59)		14.52	138	123519	2735.03		
60)		14.56	198	187332	8032.78	ng/ml	94 🚁
61)	± ±	14.65	169	311556	3025.99	ng/ml	100 "
62)		14.71	77	552255	2833.24	ng/ml	95 W)
65)	<u> </u>	15.24	248	136110	3382.38		95
	Hexachlorobenzene	15.31	284	150705	3390.56	ng/ml	89
	Pentachlorophenol	15.66	266	136033	6495.78		
69)		15.98	178	670987	3108.97		
70)	Anthracene	16.07	178	679554	3152.20		100
	Carbazole	16.36	167		3048.18		100
	Di-n-butyl Phthalate	16.98			3019.85		
	Fluoranthene	17.93	202	693194	3223.89	ng/ml	98
	Benzidine	18.19	184	580331	5579.53	ng/ml	99
	Pyrene	18.29	202	705847 344348	2941.78	ng/ml	99
	Butyl Benzyl Phthalate	19.43	149	344348	2743.00	ng/ml	91

^{(#) =} qualifier out of range (m) = manual integration 0412F008.D 0412BNLL.M Wed Apr 13 08:35:16 2005

= Allele

Data File : J:\MS10\DATA\041205\0412F008.D

Vial: 8

Acq On : 12 Apr 2005 3:24 pm Operator: DHaderly Sample : 8270LL @ 3.0/6.0ppm | SVM19-15I | KWG050 Inst : MS10 Misc : SVM\W0505864\8-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:12 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc U	nit	Qvalue
79)	3,3'-Dichlorobenzidine	20.42	252	429470	6183.67	ng/ml	. 98
80)	Benz(a)anthracene	20.42	228	601451	3136.62	ng/ml	. 99
81)	Chrysene	20.51	228	528506	2928.82	ng/ml	. 99
82)	Bis(2-ethylhexyl) Phthalat	20.62	149	446680	2734.68	ng/ml	. 99
84)	Di-n-octyl Phthalate	22.41	149	709393	2790.53	ng/ml	. 98
85)	Benzo(b)fluoranthene	23.32	252	496460	3104.64	ng/ml	100
86)	Benzo(k)fluoranthene	23.41	252	472355	3028.41	ng/ml	. 98
87)	Benzo(a)pyrene	24.28	252	477680	3196.74	ng/ml	. 100
88)	Indeno(1,2,3-cd)pyrene	27.05	276	397261m	3194.00	ng/ml	
89)	Dibenz(a,h)anthracene	27.13	278	410626	3420.56	ng/ml	. 99
90)	Benzo(g,h,i)perylene	27.58	276	414039	3331.83	ng/ml	. 99

^{(#) =} qualifier out of range (m) = manual integration 0412F008.D 0412BNLL.M Wed Apr 13 08:35:16 2005

(QT Reviewed)

Quantitation Report

Data File : J:\MS10\DATA\041205\0412F008.D

Vial: 8

MS Integration Params: RTEINT.P

Quant Time: Apr 13 5:59 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Data File : J:\MS10\DATA\041205\0412F008.D

Vial: 8

Acq On : 12 Apr 2005 3:24 pm Operator: DHaderly Sample : 8270LL @ 3.0/6.0ppm | SVM19-15I | KWG050 Inst : MS10

: 8270LL @ 3.0/6.0ppm | SVM19-15I | KWG050 Inst : MS10 : SVM\W0505864\8-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:07 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Misc

Data File : J:\MS10\DATA\041205\0412F009.D

Vial: 9

Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:13 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

1) 1,4-Dichlorobenzene-d4 8.75 152 65520 1000.00 ng/ml 0.01 23) Naphthalene-d8 10.70 136 213060 1000.00 ng/ml 0.01 37) Acenaphthene-d10 13.52 164 117289 1000.00 ng/ml 0.00 63) Phenanthrene-d10 15.94 188 182079 1000.00 ng/ml 0.00 74) Chrysene-d12 20.44 240 146328 1000.00 ng/ml 0.01 83) Perylene-d12 24.43 264 110534 1000.00 ng/ml 0.01 System Monitoring Compounds 4) 2-Fluorophenol 6.98 112 296548 3773.21 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 110 Recovery = 100.62% 7) Phenol-d6 8.29 99 360876 3949.04 ng/ml 0.01 Spiked Amount 3750.000 Range 43 - 128 Recovery = 105.31% 21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00 Spiked Amount 2500.000 Range 54 - 158 Recovery = 166.23%#
37) Acenaphthene-d10 3.52 164 117289 1000.00 ng/ml 0.00 63) Phenanthrene-d10 15.94 188 182079 1000.00 ng/ml 0.00 74) Chrysene-d12 20.44 240 146328 1000.00 ng/ml 0.01 83) Perylene-d12 24.43 264 110534 1000.00 ng/ml 0.01 System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 Range 38 - 110 Spiked Amount 3750.000 Range 43 - 128 Spiked Amount 3750.000 Range 43 - 128 Spiked Amount 2500.000 Spiked Amount 2500.000 Range 30 - 139 Recovery = 105.31% 21) Nitrobenzene-d5 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12 System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 Spiked Amount 3750.000 Spiked Amount 2500.000 Spiked Amount 3750.000 Spiked Amoun
74) Chrysene-dl2
83) Perylene-d12 24.43 264 110534 1000.00 ng/ml 0.01 System Monitoring Compounds 4) 2-Fluorophenol 6.98 112 296548 3773.21 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 110 Recovery = 100.62% 7) Phenol-d6 8.29 99 360876 3949.04 ng/ml 0.01 Spiked Amount 3750.000 Range 43 - 128 Recovery = 105.31% 21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
System Monitoring Compounds 4) 2-Fluorophenol 6.98 112 296548 3773.21 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 110 Recovery = 100.62% 7) Phenol-d6 8.29 99 360876 3949.04 ng/ml 0.01 Spiked Amount 3750.000 Range 43 - 128 Recovery = 105.31% 21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
4) 2-Fluorophenol 6.98 112 296548 3773.21 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 110 Recovery = 100.62% 7) Phenol-d6 8.29 99 360876 3949.04 ng/ml 0.01 Spiked Amount 3750.000 Range 43 - 128 Recovery = 105.31% 21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
Spiked Amount 3750.000 Range 38 - 110 Recovery = 100.62% 7) Phenol-d6 8.29 99 360876 3949.04 ng/ml 0.01 Spiked Amount 3750.000 Range 43 - 128 Recovery = 105.31% 21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
7) Phenol-d6 8.29 99 360876 3949.04 ng/ml 0.01 Spiked Amount 3750.000 Range 43 - 128 Recovery = 105.31% 21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
Spiked Amount 3750.000 Range 43 - 128 Recovery = 105.31% 21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
21) Nitrobenzene-d5 9.59 82 361213 4041.98 ng/ml 0.01 Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
Spiked Amount 2500.000 Range 30 - 139 Recovery = 161.68%# 42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
42) 2-Fluorobiphenyl 12.46 172 617680 4310.69 ng/ml 0.01 Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
Spiked Amount 2500.000 Range 37 - 126 Recovery = 172.43%# 64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
64) 2,4,6-Tribromophenol 14.83 330 99144 4898.39 ng/ml 0.01 Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
Spiked Amount 3750.000 Range 38 - 157 Recovery = 130.62% 77) Terphenyl-d14 18.58 244 554881 4155.75 ng/ml 0.00
77) Terphenyl-d14
= = - J'
Spiked Amount 2500.000 Range 54 - 158 Recovery = 166.23%#
Target Compounds Qvalue
2) N-Nitrosodimethylamine 5.35 42 272855 4125.47 ng/ml 98
3) Pyridine 5.38 79 298545 3050.03 ng/ml 92
6) Bis(2-chloroethyl) Ether 8.39 93 295296 3621.61 ng/ml 98
8) Phenol 8.31 94 679320 7432.74 ng/ml 91 🔻
9) Aniline 8.28 93 467925 3890.34 ng/ml# 84
20, 2 01-2 0 01-10 0 119, 111
12) 1,4-Dichlorobenzene 8.77 146 389695 4197.72 ng/ml 98 13) 1,2-Dichlorobenzene 8.99 146 344351 4173.76 ng/ml 98
•
• • · · · · · · · · · · · · · · · · · ·
27) Bis(2-chloroethoxy)methane 10.36 93 362249 3836.43 ng/ml 99

Quantitation Report (QT Reviewed)

Data File : J:\MS10\DATA\041205\0412F009.D

Vial: 9 Acq On : 12 Apr 2005 4:04 pm Operator: DHaderly Sample : 8270LL @ 4.0/8.0ppm | SVM19-15J | KWG050 Inst : MS10 Misc : SVM\W0505864\9-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:13 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL
Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
28) 2,4-Dichlorophenol	10.51	162	527183	8959.83 ng/ml	. 99
29) Benzoic Acid	10.57	122	243583	8742.51 ng/ml	97
30) 1,2,4-Trichlorobenzene	10.61	180	326107	4458.20 ng/ml	. 98
31) Naphthalene	10.73	128	859457	4190.73 ng/ml	. 99
32) 4-Chloroaniline	10.86	127	412726	4415.89 ng/ml	. 99
33) Hexachlorobutadiene	10.93	225	220005	5061.30 ng/ml	. 99
<pre>35) 4-Chloro-3-methylphenol</pre>	11.70	107	494078	8138.07 ng/ml	. 98
36) 2-Methylnaphthalene	11.84	141	513509	4424.94 ng/ml	100
39) Hexachlorocyclopentadiene	12.09	237	173261	5277.54 ng/ml	100
40) 2,4,6-Trichlorophenol	12.33	196	380649	8928.73 ng/ml	. 99
41) 2,4,5-Trichlorophenol	12.40	196	407378	8726.89 ng/ml	100
44) 2-Chloronaphthalene	12.63	127	249320	4192.42 ng/ml	
45) 2-Nitroaniline	12.82	65	232947	4047.87 ng/ml	95
46) Acenaphthylene	13.29	152	839195	3996.70 ng/ml	. 99
47) Dimethyl Phthalate	13.14	163	676453	4076.63 ng/ml	. 99
48) 2,6-Dinitrotoluene	13.24	165	170562	4400.06 ng/ml	. 97
49) Acenaphthene	13.58	154	498594	4045.18 ng/ml	100
50) 3-Nitroaniline	13.51	138	167676	3915.00 ng/ml	. 95
51) 2,4-Dinitrophenol	13.69	184	164981	8242.26 ng/ml	. 84
52) Dibenzofuran	13.87	168	836075	4154.73 ng/ml	. 93
53) 4-Nitrophenol	13.89	109	213447	9621.06 ng/ml	.# 63
54) 2,4-Dinitrotoluene	13.90	165	219046	4398.57 ng/ml	. 95
55) 2,3,4,6-Tetrachlorophenol	14.09	232	307548	9273.27 ng/ml	. 98
56) Fluorene	14.42	166	590182	4010.34 ng/ml	. 99
57) 4-Chlorophenyl Phenyl Ethe	14.44	204	308168	4211.20 ng/ml	94 🔻
58) Diethyl Phthalate	14.31	149	633290	3820.00 ng/ml	
59) 4-Nitroaniline	14.53	138	170095	3762.17 ng/ml	
60) 2-Methyl-4,6-dinitrophenol	14.57	198	238624	10220.83 ng/m	
61) N-Nitrosodiphenylamine	14.65	169	394700	3829.28 ng/ml	100
62) Azobenzene	14.71	77	727790	3729.65 ng/ml	
65) 4-Bromophenyl Phenyl Ether	15.24	248	172912	4435.73 ng/ml	87
66) Hexachlorobenzene	15.31	284	200404	4654.34 ng/ml	94
68) Pentachlorophenol	15.67	266	183578	8957.57 ng/ml	100
69) Phenanthrene	15.98	178	881964	4218.53 ng/ml	100
70) Anthracene	16.08	178	892988	4276.05 ng/ml	100
71) Carbazole	16.36	167	818261	4178.58 ng/ml	. 99
72) Di-n-butyl Phthalate	16.98		1056727	4101.74 ng/ml	99
73) Fluoranthene	17.93	202	919946	4416.68 ng/ml	99
75) Benzidine	18.19	184	713873	7010.97 ng/ml	99
76) Pyrene	18.30	202	953333	4058 63 ng/ml	100
78) Butyl Benzyl Phthalate	19.43	149	452221	3679.71 ng/ml	94

^{(#) =} qualifier out of range (m) = manual integration 0412F009.D 0412BNLL.M Wed Apr 13 08:35:18 2005

- WINE

Quantitation Report (QT Reviewed)

Data File : J:\MS10\DATA\041205\0412F009.D

Acq On : 12 Apr 2005 4:04 pm Operator: DHade Sample : 8270LL @ 4.0/8.0ppm | SVM19-15J | KWG050 Inst : MS10 Misc : SVM\W0505864\9-ICAL.H Multiplr: 1.00 Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:13 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
79)	3,3'-Dichlorobenzidine	20.43	252	559886	8234.71 ng/ml	. 99
80)	Benz(a)anthracene	20.42	228	792361	4221.05 ng/ml	. 99
81)	Chrysene	20.52	228	690334	3907.84 ng/ml	. 99
	Bis(2-ethylhexyl) Phthalat	20.62	149	571302	3572.82 ng/ml	. 98
84)	Di-n-octyl Phthalate	22.42	149	920763	3676.68 ng/ml	. 95
85)	Benzo(b)fluoranthene	23.33	252	628031	3986.73 ng/ml	. 99
86)	Benzo(k)fluoranthene	23.43	252	651067	4237.22 ng/ml	100
	Benzo(a)pyrene	24.29	252	626169	4253.74 ng/ml	. 99
	Indeno(1,2,3-cd)pyrene	27.06	276	534607	4363.17 ng/ml	100
89)	Dibenz(a,h)anthracene	27.15	278	528032	4464.98 ng/ml	. 99
90)	Benzo(g,h,i)perylene	27.60	276	539081	4403.56 ng/ml	. 98

(QT Reviewed)

0412F009.D

0412BNLL.RES 9 DHaderly MS10 Quant Results File: Vial: Operator: Multiplr: Inst | KWG050 SVM19-15J J:\MS10\DATA\041205\0412F009.D 12 Apr 2005 4:04 pm 8270LL @ 4.0/8.0ppm | SVM\W0505864\9-ICAL.H MS Integration Params: RTEINT.P 6:18 2005 Apr 13 Quant Time: Data File Acq On Sample Misc

Integrator) (RTE J:\MS10\METHODS\BNA\0412BNLL.M 8270LL ICAL 2005 Wed Apr 13 06:36:18 Initial Calibration Response via Last Update Method Title

29.00 28.00 T,enslyneq(i,rl,g)ozneB 27.00 T,enboshinks(h),s/snedknene 26.00 25.00 Perylene-d12,1 24.00 Denzo(a)pyrene, TC 23.00 Di-n-octyl Phthalate, TC 22,00 21,00 Chrysere Dis(2-ethylhexyl) Phthalate,T T,enibiznedo15/elnedo260/funs(s)sneG 20,00 Butyl Benzyl Phthalate,T 19.00 Zerphenyl-d14,S TIC: 0412F009.D 18.00 17.00 T,etslanting lytud-n-iQ T,elozadas D 16.00 T,enentingned StatutnA Pentachlorophenol, TC HexaeRichteral Phenyl Ether, T 15.00 Notined Transport of the state 14.00 T,lonahteroti,TP Dibenzofuran,T-T,lonahterotiorophenol,T,2,4,6-Tetrachlorophenol 7, enerthdenes T. ene 11.00 12.00 13.00 7.9nilinsotiM-S T, lonahde Manarata (2) Rising to the Manarata (2) T, lonahde Manarata (2) T, lonahda (2) T, lon -Chlore-3-methylphenol TC-Volore-1, Z-Methylphenol TC-Methylnaphthalene, T T,ensrthem(vxortheorotho-2)ai8
T,enersthem(vxortheorotho-2)ai8
T,enersthem(vxortheorotho-2)ai8
T,enersthem(vxortheorotho-2)ai8 T,enilinectold-A 10.00 OT, load Prionand Tenning

One independent of the following the following of the following the follo T ansitiso kondastargas. P 900 800 2.00 2-Fluorophenol,S 900 T,enimslyhtemilentshirt-M 5.00 Abundance 800000 200000 3400000 3200000 3000000 2800000 2600000 2400000 2200000 2000000 000009 1400000 1000000 200000 40000 200000 Lime-->

Data File : J:\MS10\DATA\041205\0412F009.D

Vial: 9

Misc : SVM\W0505864\9-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 5:59 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F009.D

Vial: 9

Acq On : 12 Apr 2005 4:04 pm Operator: DHaderly

Sample : 8270LL @ 4.0/8.0ppm | SVM19-15J | KWG050 Inst : MS10 Misc : SVM\W0505864\9-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:09 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Multiple Level Calibration

0412F009.D 0412BNLL.M

Wed Apr 13 06:09:33 2005

Data File : J:\MS10\DATA\041205\0412F010.D

Vial: 10 Operator: DHaderly

Acq On : 12 Apr 2005 4:43 pm Operator: DHade Sample : 8270LL @ 5.0/10.0ppm | SVM19-15K | KWG05 Inst : MS10 Misc : SVM\W0505864\10-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:14 2005 Quant Results File: 0412BNLL.RES

Quant Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL
Last Update : Wed Apr 13 05:58:48 2005
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev(Min)
1) 1,4-Dichlorobenzene-d4	8.75	152	64561	1000.00 ng/ml	0.01
23) Naphthalene-d8	10.70	136	214885	1000.00 ng/ml	0.01
37) Acenaphthene-d10	13.52	164	114868	1000.00 ng/ml	0.00
63) Phenanthrene-d10	15.94	188	182840	1000.00 ng/ml	0.00
74) Chrysene-d12	20.45	240	155371	1000.00 ng/ml	0.02
83) Perylene-d12	24.43	264	111910	1000.00 ng/ml	0.01
System Monitoring Compounds					
4) 2-Fluorophenol	6.98	112	367854	4750.02 ng/ml	0.01
Spiked Amount 3750.000	Range 38	- 110	Recov		
7) Phenol-d6	8.30	99	438745	4872.48 ng/ml	0.02
Spiked Amount 3750.000	Range 43	- 128	Recov		
21) Nitrobenzene-d5	9.60	82	441273	5011.20 ng/ml	0.02
Spiked Amount 2500.000	Range 30	- 139	Recove		
42) 2-Fluorobiphenyl	12.45	172	762660	5434.66 ng/ml	0.01
Spiked Amount 2500.000	Range 37	- 126	Recov		
64) 2,4,6-Tribromophenol	14.83	330	129699	6381.34 ng/ml	0.01
Spiked Amount 3750.000	Range 38	- 157	Recove		
77) Terphenyl-d14	18.58	244	718393	5067.21 ng/ml	0.00
Spiked Amount 2500.000	Range 54	- 158	Recove	ery = 202.69%	
Target Compounds				Qva	lue
N-Nitrosodimethylamine	5.35	42	351835	5398.64 ng/ml	98
3) Pyridine	5.38	79	381099	3951.26 ng/ml	93
6) Bis(2-chloroethyl) Ether		93	372601	4637.59 ng/ml	ري 96
8) Phenol	8.32	94	824174	9151.60 ng/ml	96) 95 y
9) Aniline	8.29	93	559476	4720.59 ng/ml	94
10) 2-Chlorophenol	8.47	128	718766	10007.47 ng/ml	98
11) 1,3-Dichlorobenzene	8.67	146	454904	5163.59 ng/ml	99
12) 1,4-Dichlorobenzene	8.77	146	461650	5046.67 ng/ml	97
13) 1,2-Dichlorobenzene	8.99	146	433286	5329.71 ng/ml	98
14) Benzyl Alcohol	9.00	108	254043	5047.53 ng/ml	99
15) Bis(2-chloroisopropyl) E		45	613011	4201.86 ng/ml	83
16) 2-Methylphenol	9.18	107	527761	9834.01 ng/ml	95
18) Hexachloroethane	9.49	117	210209	5234.30 ng/ml	90
19) N-Nitrosodi-n-propylamin		70		4475.23 ng/ml	
20) 4-Methylphenol	9.44	107	769557		99
22) Nitrobenzene	9.63	77		4928.52 ng/ml	97
24) Isophorone	10.06	82		4925.75 ng/ml	100
25) 2-Nitrophenol	10.12		445733	J,	92
26) 2,4-Dimethylphenol	10.25			10209.58 ng/ml	99
			454943	4777.19 ng/ml	98
27) Bis(2-chloroethoxy) metha			454943	4777.19 ng/ml	

Data File : J:\MS10\DATA\041205\0412F010.D

Vial: 10 Acq On : 12 Apr 2005 4:43 pm Operator: DHaderly

Sample : 8270LL @ 5.0/10.0ppm | SVM19-15K | KWG05 Inst : MS10 Misc : SVM\W0505864\10-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:14 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Wed Apr 13 05:58:48 2005

Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc Unit Q	value
28) 2,4-Dichlorophenol	10.52	162	650909	10968.68 ng/ml	98
29) Benzoic Acid	10.60	122	330143	11748.63 ng/ml	97
30) 1,2,4-Trichlorobenze		180	406407	5508.79 ng/ml	98
31) Naphthalene	10.74	128	1089401	5266.83 ng/ml	99
32) 4-Chloroaniline	10.86	127	489454	5192.35 ng/ml	95
33) Hexachlorobutadiene	10.93	225	275585	6286.10 ng/ml	99
35) 4-Chloro-3-methylphe	enol 11.71	107	633896	10352.36 ng/ml	97
36) 2-Methylnaphthalene	11.84	141	631863	5398.56 ng/ml	99
39) Hexachlorocyclopenta	adiene 12.09	237	218771	6804.22 ng/ml	99
40) 2,4,6-Trichloropheno	12.33	196	482069	11546.03 ng/ml	97
41) 2,4,5-Trichloropheno	12.41	196	503841	11020.82 ng/ml	99
44) 2-Chloronaphthalene	12.63	127	318307	5465.28 ng/ml	99
45) 2-Nitroaniline	12.83	65	290043	5146.24 ng/ml	89
46) Acenaphthylene	13.29	152	1063303	5170.76 ng/ml	99
47) Dimethyl Phthalate	13.14	163	852680	5246.96 ng/ml	99
48) 2,6-Dinitrotoluene	13.24	165	203624	5363.69 ng/ml	78
49) Acenaphthene	13.58	154	609437	5048.69 ng/ml	98
50) 3-Nitroaniline	13.51	138	203804	4858.84 ng/ml	91
51) 2,4-Dinitrophenol	13.70	184	223067	10687.81 ng/ml	97
52) Dibenzofuran	13.87	168	1019746	5174.25 ng/ml	90
53) 4-Nitrophenol	13.89	109	275705	12689.24 ng/ml	
54) 2,4-Dinitrotoluene	13.91	165	267574	5486.28 ng/ml	99
55) 2,3,4,6-Tetrachlorop		232	395918	12189.43 ng/ml	93 V
56) Fluorene	14.43	166	745118	5169.86 ng/ml	99 .
57) 4-Chlorophenyl Pheny		204	388421	5419.75 ng/ml	98 WIN
58) Diethyl Phthalate	14.32	149	792121	4878.77 ng/ml	99
59) 4-Nitroaniline	14.55	138	210355	4750.71 ng/ml	97
60) 2-Methyl-4,6-dinitro		198	312140	13651.48 ng/ml	99
61) N-Nitrosodiphenylami		169	514478	5096.54 ng/ml	100
62) Azobenzene	14.71	77	969721	5074.19 ng/ml	99
65) 4-Bromophenyl Phenyl		248	226883	5796.03 ng/ml	99
66) Hexachlorobenzene	15.32	284	250765	5799.72 ng/ml	79
68) Pentachlorophenol	15.67	266	244410	11956.95 ng/ml	99
69) Phenanthrene	15.99	178	1108318	5279.14 ng/ml	100
70) Anthracene	16.08	178	1109981	5292.99 ng/ml	100
71) Carbazole	16.37			5073.32 ng/ml	100
72) Di-n-butyl Phthalate	16.98	149	1290384	4987.84 ng/ml	100
73) Fluoranthene	17.93			5497.94 ng/ml	99
75) Benzidine	18.19		850876	7870.11 ng/ml	100
76) Pyrene	18.30	202	1141191	4575.63 ng/ml	99
78) Butyl Benzyl Phthala			567667	4350.25 ng/ml	96

Data File : J:\MS10\DATA\041205\0412F010.D

Operator: DHaderly

Acq On : 12 Apr 2005 4:43 pm Operator: DHade Sample : 8270LL @ 5.0/10.0ppm | SVM19-15K | KWG05 Inst : MS10 Misc : SVM\W0505864\10-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:14 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
79)	3,3'-Dichlorobenzidine	20.44	252	723126	10016.59 ng/r	nl 99
80)	Benz(a)anthracene	20.43	228	1015189	5093.33 ng/m	l 99
81)	Chrysene	20.52	228	882551	4705.16 ng/m	l 99
82)	Bis(2-ethylhexyl) Phthalat	20.63	149	735995	4334.89 ng/m	l 99
	Di-n-octyl Phthalate	22.42	149	1196271	4718.08 ng/m	l 97
85)	Benzo(b)fluoranthene	23.34	252	814947	5109.66 ng/m	l 99
86)	Benzo(k)fluoranthene	23.44	252	839399	5395.74 ng/m	l 100
87)	Benzo(a)pyrene	24.30	252	798590	5358.34 ng/m	l 99
88)	Indeno(1,2,3-cd)pyrene	27.07	276	683406	5509.01 ng/m	l 99
89)	Dibenz(a,h)anthracene	27.16	278	683518	5708.69 ng/m	l 99
90)	Benzo(g,h,i)perylene	27.61	276	674342	5440.73 ng/m	l 100

Vial: 10

29.00 27.00 28.00 Denzo(g,h,i)perylene,T T,eneJeffffk(f,b) SnSdivenent 26.00 25.00 1,21b-enely1e^C 0412BNLL.RES Benzo(a)pyrene,TC 23.00 24.00 Benzo (b) flug (7) flug (anthene, T 10 DHaderly Di-n-octyl Phthalate, TC 21.00 22.00 MS10 1.00 Quant Results File: Operator: Chrysel(2, ethylhexyl) Phthalate, T (RTE Integrator) Multiplr T,91-Dichlorob@exix(s)eafthracene,T 15.00 16.00 17.00 18.00 19.00 20.00 Inst Butyl Benzyl Phthalate, T S, hrb-lynengreT TIC: 0412F010.D T,enery Lenibizne8 SVM19-15K | KWG05 Di-n-butyl Phthalate,T T,elozedtsO J:\MS10\METHODS\BNA\0412BNLL.M T,enertigeastRinA 1,01b-enendtr Pentachlorophenol,TC FERSTROPOSON ENGLY Ether, T 2005 11.00 12.00 13.00 14.00 1.0. The equipment of the Control of Acenaphthene,TC T,enelynthere, Mcenaphthylene, T Wed Apr 13 06:36:18 12 Apr 2005 4:43 pm 8270LL @ 5.0/10.0ppm | SVM\W0505864\10-ICAL.H Calibration T.enilinsottiM-S OT, lone figore light to the first place of the contract of th MS Integration Params: RTEINT.P 6:18 2005 8270LL ICAL T. Ionendry heritopher 2. Vidropher 3. Vidro 10.00 Initiāl T. Innertoping St. 1.3-Did in St. 1. 9.00 Quant Time: Apr 13 OT lon**syle**b-lonstrainin 1, lonsondoroin O-S 8.00 7.00 Response via 2-Fluorophenol, S Last Update 6.00 Method Title Acq On Sample N-Mitrospelimethylamine, T. 2.00 Misc Abundance 4000000 3500000 3000000 250000 100000 500000 200000 1500000 Time->

(QT Reviewed)

Quantitation Report

J:\MS10\DATA\041205\0412F010.D

Data File

Vial:

0412BNLL.M 0412F010.D

791

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F010.D

0\DATA\041205\0412F010.D Vial: 10

MS Integration Params: RTEINT.P

Quant Time: Apr 13 5:59 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Multiple Level Calibration

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F010.D

Vial: 10

Acq On : 12 Apr 2005 4:43 pm Operator: DHaderly

Sample : 8270LL @ 5.0/10.0ppm | SVM19-15K | KWG05 Inst Misc : SVM\W0505864\10-ICAL.H Mult

Inst : MS10 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:09 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Multiple Level Calibration

Data File : J:\MS10\DATA\041205\0412F011.D

Vial: 11 Acq On : 12 Apr 2005 5:23 pm Operator: DHaderly

Sample : 8270LL CLP @ 0.1ppm | SVM18-35D | KWG050 Inst : MS10 Misc : SVM\W0505864\11-ICAL.H Multiplr: 1.00 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:15 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(N	Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.74 10.69 13.51 15.93 20.43 24.42	164 188 240	77153 266357 140326 217547 168165 133522	1000.00 1000.00 1000.00	o ng/ml	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	0.00 Range 30 0.00 Range 37 0.00 Range 38	- 110 99 - 128 82 - 139 172 - 126 330 - 157 244	0d Recove: 0d Recove: 0d Recove: 0 Recove: 0 Recove: 0d Recove:	ry = 0.00	ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenz 43) Biphenyl 67) Atrazine	8.12 9.36 11.36 ene 12.10 12.59 15.54	106 105 55 216 154 200	7106m 14197 5109 10227 20422 5383	100.31 101.11 93.96	ng/ml# ng/ml	68 92 98 98 96

^{(#) =} qualifier out of range (m) = manual integration 0412F011.D 0412BNLL.M Wed Apr 13 08:35:21 2005

(QT Reviewed)

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 I,21b-enelyie 0412BNLL.RES DHaderlv MS10 1.00 Quant Results File: Vial: Operator: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) Multiplr Inst TIC: 0412F011.D SVM18-35D | KWG050 Phenanthrene-d10,1 T,enisstA J:\MS10\DATA\041205\0412F011.D 2005 I,01b-enenthqsneoA Wed Apr 13 06:36:18 SVM\W0505864\11-ICAL.H Initial Calibration 0.1ppm T,lynedqi8 MS Integration Params: RTEINT.P T,eneznedorohorateT-č,4,5,1 6:17 2005 8270LL ICAL 8270LL CLP @ Naphthalene-d8,1 12 Apr 2005 dcetophenone,T Quant Time: Apr 13 1,4-Dichlorobenzene-d4,1 8.00 Denzaldehyde, T 7.00 Response via Last Update Data File 00.9 Acq On Method Sample Title Misc Abundance 1e+07 1.1e+07 0000006 8000000 7000000 0000009 5000000 4000000 3000000 2000000 1000000 795 THIMK

0412BNLL.M 0412F011.D

Wed Apr 13 08:35:21 2005

Quantitation Report (Qedit)

Data File : J:\MS10\DATA\041205\0412F011.D

Vial: 11

Acq On : 12 Apr 2005 5:23 pm Operator: DHaderly

Sample : 8270LL CLP @ 0.1ppm | SVM18-35D | KWG050 Inst : MS10 Misc : SVM\W0505864\11-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 5:59 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Multiple Level Calibration

Quantitation Report (Qedit)

Vial: 11

Data File : J:\MS10\DATA\041205\0412F011.D

Acq On : 12 Apr 2005 5:23 pm Operator: DHaderly

Sample : 8270LL CLP @ 0.1ppm | SVM18-35D | KWG050 Inst : MS10 Misc : SVM\W0505864\11-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 6:11 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Multiple Level Calibration

Data File : J:\MS10\DATA\041205\0412F012.D

Vial: 12 Acq On : 12 Apr 2005 6:02 pm Operator: DHaderly

Sample : 8270LL CLP @ 0.2ppm | SVM18-35E | KWG050 Inst : MS10 Misc : SVM\W0505864\12-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:16 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(M	Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.74 10.68 13.51 15.94 20.43 24.42		76923 255684 137548 214874 161982 130607	1000.0 1000.0 1000.0	0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	Range 38 0.00 Range 43 0.00 Range 30 0.00	- 128 82 - 139 172 - 126 330 - 157 244	0 Recove 0 Recove 0d Recove 0 Recove 0	ry = 0.00	ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%#	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenz 43) Biphenyl 67) Atrazine	8.12 9.35 11.36 ene 12.10 12.59 15.54	106 105 55 216 154 200	13260 25562 9350 19370 37743 10312	282.72 200.54 191.24 195.37 177.16 193.89	ng/ml# ng/ml ng/ml ng/ml	95 61 97 99 98

94/14/6_____ (#) = qualifier out of range (m) = manual integration \cup

0412F012.D 0412BNLL.M Wed Apr 13 08:35:23 2005

Page 1

(QT Reviewed)

18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 l,21b-enslene Quant Results File: 0412BNLL.RES Operator: DHaderly MS10 1.00 Vial: 12 Multiplr: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) 8270LL ICAL hrysene-d12,1 0.2ppm | SVM18-35E | KWG050 Inst TIC: 0412F012.D 17.00 16.00 Phenanthraned10,1 T,enissπ4 J:\MS10\DATA\041205\0412F012.D 10.00 11.00 12.00 13.00 14.00 15.00 2005 Acenaphthene-d10,1 Wed Apr 13 06:36:18 Initial Calibration SVM\W0505864\12-ICAL.H 6:02 pm MS Integration Params: RTEINT.P T,eneznedoroldssteT-C,4,2,f 6:17 2005 Caprolactam, T. Naphthalene-d8,1 8270LL CLP @ 12 Apr 2005 9.00 T,enonedqoteoA Quant Time: Apr 13 1,4b-ensznedoroldoiQ-4,1 8.00 T,ebydehyde,T 2.00 Response via Last Update Data File 00.9 Acq On Sample Method Title Time--> 5.00 Misc Abundance 0000006 8000000 7000000 0000009 5000000 4000000 3000000 1000000 2000000 799

Wed Apr 13 08:35:23 2005 0412BNLL.ME 0412F012.D

Data File : J:\MS10\DATA\041205\0412F013.D

Vial: 13

Acq On : 12 Apr 2005 6:41 pm Operator: DHaderly

Sample : 8270LL CLP @ 1.0ppm | SVM18-45G | KWG050 Inst : MS10 Misc : SVM\W0505864\13-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:16 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(1	Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.74 10.69 13.51 15.93 20.44 24.42		84521 282511 147620 230529 179283 139297	1000.00 1000.00 1000.00	0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml 0 ng/ml	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	0.00 Range 38 0.00 Range 43 0.00 Range 30 0.00 Range 37 0.00 Range 38 0.00 Range 54	- 110 99 - 128 82 - 139 172 - 126 330 - 157 244	Recove 0 Recove 0 Recove 0d Recove 0 Recove	0.00 ery = 0.00 ery = 0.00 ery = 0.00	0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenz 43) Biphenyl 67) Atrazine	8.12 9.35 11.37 sene 12.10 12.60 15.55		134354 49684 109306	959.29 919.73 1027.25 955.33	Qvaing/ml ng/ml# ng/ml ng/ml ng/ml ng/ml	98 62 98 98 98 98

Mider

94/4/5

^{(#) =} qualifier out of range (m) = manual integration 0412F013.D 0412BNLL.M Wed Apr 13 08:35:24 2005

(QT Reviewed)

Quant Results File: 0412BNLL.RES DHaderly MS10 1.00 13 Vial: Operator: Multiplr: Inst 8270LL CLP @ 1.0ppm | SVM18-45G | KWG050 J:\MS10\DATA\041205\0412F013.D SVM\W0505864\13-ÎCAL.H 6:41 pm MS Integration Params: RTEINT.P 6:15 2005 12 Apr 2005 Quant Time: Apr 13 Data File Acq On Sample Misc

J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) Method

2005 Wed Apr 13 06:36:18 Initial Calibration 8270LL ICAL Response via Last Update Title

TIC: 0412F013.D 4000000 3500000

0412BNLL.M 0412F013.D

Wed Apr 13 08:35:24 2005

801

Data File : J:\MS10\DATA\041205\0412F014.D Vial: 14

Operator: DHaderly

Acq On : 12 Apr 2005 7:20 pm Operator: DHade Sample : 8270LL CLP @ 2.0ppm | SVM19-26A | KWG050 Inst : MS10 Misc : SVM\W0505864\14-ICAL.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:17 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.75 10.68 13.51 15.94 20.43 24.41	152 136 164 188 240 264	62833 210816 111671 177502 138905 105935	1000.0 1000.0 1000.0	0 ng/ml	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	0.00 Range 30 0.00 Range 37 0.00	99 - 128 82 - 139 172 - 126 330 - 157 244	0 Recove 0 Recove 0 Recove 0 Recove 0 Recove 0 Recove	ry = 0.00	ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenz 43) Biphenyl 67) Atrazine	8.12 9.35 11.39 ene 12.10 12.59 15.55	106 105 55 216 154 200	197004 77360 161265 329061	3059.20 1892.13 1919.07 2003.44 1902.48 1967.33	ng/ml# ng/ml ng/ml ng/ml	lue 96 61 93 97 99

94/14/6

(QT Reviewed)

```
22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00
                                                                                                                                                                                                                                                                                                                                  Perylene-d12,1
                                                  Quant Results File: 0412BNLL.RES
          Operator: DHaderly
                             1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                  10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00
Vial:
                              Multiplr:
                                                                     J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)
8270LL ICAL
                                                                                                                                                                                                                                                                                                     Chrysene-d12,I
                    Inst
                                                                                                             TIC: 0412F014.D
                    SVM19-26A | KWG050
                                                                                                                                                                                                                                                             Phenanthrene-d10,1
                                                                                                                                                                                                             I ,enizetiA
J:\MS10\DATA\041205\0412F014.D
                                                                                          2005
                                                                                                                                                                                                                                         Acenaphthene-d10,1
                                                                                         Wed Apr 13 06:36:18
Initial Calibration
                   8270LL CLP @ 2.0ppm | 3
SVM\W0505864\14-ICAL.H
         7:20 pm
                                        MS Integration Params: RTEINT.P
                                                                                                                    1,2,4,5-Tetrachloroben;
                                                  Quant Time: Apr 13 6:15 2005
                                                                                                                                                                                                                                                                                                        Caprolactam,T
                                                                                                                                                                                                                                                  Naphthalene-d8,1
          12 Apr 2005
                                                                                                                                                                                              T,enonedqoteo.A
                                                                                                                                                                                                                                                                                                                                                                                                                                  90.6
                                                                                                                                                                                                                                                                   1,4b-ensznedoroldoiG-4,1
                                                                                                                                                                                                                                                                                                                                                                                                                                   8.00
                                                                                                                                                                                                                       Benzaldehyde, T
                                                                                                                                                                                                                                                                                                                                                                                                                                  7.00
                                                                                                    Response via
                                                                                          Last Update
Data File
                                                                                                                                                                                                                                                                                                                                                                                                                                  00.9
           Acq On
                    Sample
                                                                      Method
                                                                               Title
                                                                                                                                                                                                                                                                                                                                                                                                                                 Time--> 5.00
                                                                                                            Abundance
                                                                                                                                                                      800000
                                                                                                                                                                                                    700000
                                                                                                                                                                                                                                                                 500000
                                                                                                                                                                                                                                                                                                400000
                                                                                                                                                                                                                                                                                                                               300000
                                                                                                                                                                                                                                                                                                                                                             200000
                                                                                                                                                                                                                                                                                                                                                                                           100000
                                                                                                                                        000006
                                                                                                                                                                                                                                   300000
```

0412BNLL.M

Wed Apr 13 08:35:26 2005

0412F014.D

Data File : J:\MS10\DATA\041205\0412F015.D

Vial: 15

Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 05:59:18 2005 Quant Results File: 0412BNLL.RES

Quant Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Wed Apr 13 05:58:48 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(N	Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.75 10.68 13.51 15.94 20.43 24.42	164 188 240	76970 249924 131809 213117 160731 125158	1000.00 1000.00 1000.00	ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	Range 37 0.00 Range 38	- 110 99 - 128 82 - 139 172 - 126 330 - 157 244	Recove 0 Recove 0d Recove 0 Recove	ry = 0.00	0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenz 43) Biphenyl 67) Atrazine	8.12 9.36 11.40 ene 12.10 12.60 15.56		369472 145231 295016 588401	4522.47 2896.83 3038.99 3105.12 2882.12 2895.78	ng/ml# ng/ml ng/ml ng/ml	97 59 96 98 98

(#) = qualifier out of range (m) = manual integration 0412F015.D 0412BNLL.M Wed Apr 13 08:35:27 2005

Page 1

(QT Reviewed)

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 Perylene-d12,1 0412BNLL.RES DHaderly 1.00 MS10 Quant Results File: Multiplr: Vial: Operator: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)
8270LL ICAL Chrysene-d12,I Inst TIC: 0412F015.D SVM18-45I | KWG050 Phenanthrene-d10,1 T,enizettA J:\MS10\DATA\041205\0412F015.D 12 Apr 2005 8:00 pm 8270LL CLP @ 3.0ppm | SVM18-45. 2005 Acenaphthene-d10,1 Wed Apr 13 06:36:18 Initial Calibration SVM\W0505864\15-ICAL.H T,lynenqiB MS Integration Params: RTEINT.P T,eneznedorohorateT-č,A,C,f 6:14 2005 Caprolactam, T Naphthalene-d8,1 Acetophenone, T Quant Time: Apr 13 1,4-Dichlorobenzene-d4,1 8.00 Benzaldehyde, T 7.00 Response via Last Update Data File 6.00 Acq On Sample Method Title 0 Time--> 5.00 Abundance 2800000 800000 2600000 000009 2400000 2200000 2000000 1800000 1400000 1000000 1600000 1200000 400000 200002

0412F015.D 0412BNLL.M

Wed Apr 13 08:35:27 2005

805

Data File : J:\MS10\DATA\041205\0412F016.D

Vial: 16

Acq On : 12 Apr 2005 8:39 pm Operator: DHaderly

Sample : 8270LL CLP @ 5.0ppm | SVM18-45J | KWG050 Inst : MS10 Misc : SVM\W0505864\16-ICAL.H Multiplr: 1.00 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: 0412BNLL.RES Quant Time: Apr 13 05:59:18 2005

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 05:58:48 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(M	Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.75 10.68 13.51 15.94 20.43 24.42	152 136 164 188 240 264	77601 247518 127466 209681 157522 123411	1000.00 1000.00 1000.00	o ng/ml	0.00 0.00 0.00 0.00 0.00
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	0.00	- 110 99 - 128 82 - 139 172 - 126 330 - 157 244	0 Recove 0 Recove 0 Recove 0 Recove 0 Recove	ery = 0.00	ng/ml	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenze 43) Biphenyl 67) Atrazine	8.13 9.36 11.43 ene 12.11 12.60 15.57	106 105 55 216 154 200	604523 237873 488770 963062	7622.33 4701.19 5025.93 5319.70 4878.02 4851.27	ng/ml# ng/ml ng/ml ng/ml	93 60 96 99 97

94/14/5

^{(#) =} qualifier out of range (m) = manual integration 0412F016.D 0412BNLL.M Wed Apr 13 08:35:28 2005

(QT Reviewed)

1,21b-enelyne^C 0412BNLL.RES DHaderly MS10 1.00 Quant Results File: Operator: Vial: Multiplr: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) I,Stb-enezyin. Inst TIC: 0412F016.D SVM18-45J | KWG050 Phenanthrene-d10,1 T,enizstiA J:\MS10\DATA\041205\0412F016.D 2005 Acenaphthene-d10,1 Wed Apr 13 06:36:18 Initial Calibration 8270LL CLP @ 5.0ppm | 3 SVM\W0505864\16-ICAL.H 8:39 pm Biphenyl, T MS Integration Params: RTEINT.P Quant Time: Apr 13 6:13 2005 T,eneznedorolorateT-C,4,2,1 Caprolactam,T 8270LL ICAL Naphthalene-d8,1 12 Apr 2005 T,enonenqoteoA Quant Time: Apr 13 1,4-Dichlorobenzene-d4,1 T,ebydehyde,T Response via Last Update Data File Method Title Acq On Sample Abundance 4500000 4000000 3000000 3500000 2500000 2000000 1500000 10000001 500000

Wed Apr 13 08:35:29

2005

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00

Wed Apr

8.00

7.00

6,00

0 Time--> 5.00

Data File : J:\MS10\DATA\041205\0412F017.D Vial: 17

Acq On : 12 Apr 2005 9:18 pm Operator: DHaderly

: 8270LL @ 3.0ppm | SVM19-29E | KWG0505864 Inst : MS10 Sample Misc : SVM\W0505864\17-ICV.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 06:37:35 2005 Quant Results File: 0412BNLL.RES

Quant Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 06:36:18 2005 Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.74 10.69 13.51 15.93 20.43 24.41	152 136 164 188 240 264	61727 200387 107154 171181 140243 104930	1000.00 ng/ml 1000.00 ng/ml 1000.00 ng/ml 1000.00 ng/ml 1000.00 ng/ml 1000.00 ng/ml	0.00 0.00 0.00 0.00 0.00
Creation Manitorina Compounds					
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000	6.96 Range 38	112 - 110	212889 Recove		0.00
7) Phenol-d6	8.27	99 - 128	253609 Recove	3090.02 ng/ml	0.00
21) Nitrobenzene-d5	9.58	82 - 139	256697 Recove	3107.19 ng/ml	0.00
42) 2-Fluorobiphenyl	12.45	172 - 126	436128 Recove	3134.53 ng/ml	0.00
64) 2,4,6-Tribromophenol	14.82 Range 38	330	69182	3324.81 ng/ml	0.00
77) Terphenyl-d14	18.58		399639	3090.45 ng/ml	0.00
-				-	
Target Compounds				Ot72	alue
2) N-Nitrogodimethylamine	E 31	12	107621		
 N-Nitrosodimethylamine Pyridine 	5.34 5.37	42 79	187631 212778	2900.78 ng/ml	98
3) Pyridine	5.37	79	212778	2900.78 ng/ml 2937.60 ng/ml	98 96
3) Pyridine6) Bis(2-chloroethyl) Ether	5.37 8.38	79 93	212778 206684	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml	98 96 98
3) Pyridine6) Bis(2-chloroethyl) Ether8) Phenol	5.37 8.38 8.29	79 93 94	212778 206684 288631	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml	98 96 98 82
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline	5.37 8.38 8.29 8.28	79 93 94 93	212778 206684 288631 335143	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml	98 96 98 82 98
 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 	5.37 8.38 8.29 8.28 8.46	79 93 94 93 128	212778 206684 288631 335143 225031	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml	98 96 98 82 98 100
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene	5.37 8.38 8.29 8.28 8.46 8.66	79 93 94 93 128 146	212778 206684 288631 335143 225031 259318	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml	98 96 98 82 98 100
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene	5.37 8.38 8.29 8.28 8.46	79 93 94 93 128	212778 206684 288631 335143 225031 259318 266472	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml	98 96 98 82 98 100 100
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99	79 93 94 93 128 146 146	212778 206684 288631 335143 225031 259318	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml	98 96 98 82 98 100 100
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99	79 93 94 93 128 146 146	212778 206684 288631 335143 225031 259318 266472 249405	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml	98 96 98 82 98 100 100
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99	79 93 94 93 128 146 146 146	212778 206684 288631 335143 225031 259318 266472 249405 142108	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml	98 96 98 82 98 100 100 99
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 th 9.17 9.16 9.48	79 93 94 93 128 146 146 146 108 45	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml#	98 96 98 82 98 100 100 99 100 98 58
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 th 9.17 9.16 9.48	79 93 94 93 128 146 146 108 45	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419 173260 121280	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml# 3322.23 ng/ml 3111.11 ng/ml	98 96 98 82 98 100 100 99 100 98 58
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 th 9.17 9.16 9.48	79 93 94 93 128 146 146 146 108 45 107	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419 173260 121280 170748	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml# 3322.23 ng/ml	98 96 98 82 98 100 100 99 100 98 58 94 81
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 9.17 9.16 9.48 9.38 9.41 9.61	79 93 94 93 128 146 146 146 108 45 107 117	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419 173260 121280 170748 249890 263100	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml# 3322.23 ng/ml 3111.11 ng/ml 3054.44 ng/ml 3300.20 ng/ml 3026.69 ng/ml	98 96 98 82 98 100 100 99 100 98 58 94 81 100
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 th 9.17 9.16 9.48 9.38 9.41 9.61 9.99	79 93 94 93 128 146 146 108 45 107 117 70 107 77 82	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419 173260 121280 170748 249890 263100 441028	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml# 3322.23 ng/ml 3111.11 ng/ml 3054.44 ng/ml 3300.20 ng/ml 3026.69 ng/ml 3566.49 ng/ml	98 96 98 82 98 100 100 99 100 98 58 94 81 100 98
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 th 9.17 9.16 9.48 9.41 9.61 9.99 10.10	79 93 94 93 128 146 146 108 45 107 117 70 107 82 139	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419 173260 121280 170748 249890 263100 441028 136157	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml# 3322.23 ng/ml 3111.11 ng/ml 3054.44 ng/ml 3300.20 ng/ml 3026.69 ng/ml 3566.49 ng/ml 3445.03 ng/ml	98 96 98 82 98 100 100 99 100 98 58 94 81 100 98 99
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol 26) 2,4-Dimethylphenol	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 9.17 9.16 9.48 9.38 9.41 9.99 10.10	79 93 94 93 128 146 146 108 45 107 117 70 107 82 139 122	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419 173260 121280 170748 249890 263100 441028 136157 174320	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml# 3322.23 ng/ml 3111.11 ng/ml 3054.44 ng/ml 3300.20 ng/ml 3026.69 ng/ml 3566.49 ng/ml 3445.03 ng/ml	98 96 98 82 98 100 100 99 100 98 58 94 81 100 98 99 98 98
3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol	5.37 8.38 8.29 8.28 8.46 8.66 8.77 8.99 8.98 9.17 9.16 9.48 9.38 9.41 9.99 10.10 10.22 ne 10.35	79 93 94 93 128 146 146 108 45 107 70 107 77 82 139 122 93	212778 206684 288631 335143 225031 259318 266472 249405 142108 391419 173260 121280 170748 249890 263100 441028 136157 174320	2900.78 ng/ml 2937.60 ng/ml 2997.48 ng/ml 3465.38 ng/ml 3064.46 ng/ml 3288.34 ng/ml 3099.15 ng/ml 3055.92 ng/ml 3120.61 ng/ml 3017.39 ng/ml 3030.03 ng/ml# 3322.23 ng/ml 3111.11 ng/ml 3054.44 ng/ml 3054.44 ng/ml 30566.49 ng/ml 3566.49 ng/ml 3445.03 ng/ml 3266.79 ng/ml 3015.18 ng/ml	98 96 98 82 98 100 100 99 100 98 58 94 81 100 98 99 98

^{(#) =} qualifier out of range (m) = manual integration 0412F017.D 0412BNLL.M Wed Apr 13 11:29:56 2005

SHINE

Data File : J:\MS10\DATA\041205\0412F017.D Vial: 17

Acq On : 12 Apr 2005 9:18 pm Operator: DHaderly

Sample : 8270LL @ 3.0ppm | SVM19-29E | KWG0505864 Inst : MS10 Misc : SVM\W0505864\17-ICV.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 06:37:35 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 06:36:18 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

	Compound	R.T.	QIon	Response	Conc Ui	nit	Qvalue	
28)	2,4-Dichlorophenol	10.50	162	197684	3308.36	na/ml	99	
	Benzoic Acid	10.47	122	82085	3452.53			
30)		10.60	180	232520	3095.75			
31)		10.73	128	619587	3161.26			
32)		10.84	127	270851	2957.35			
	Hexachlorobutadiene	10.92	225	152318	3099.21			
	4-Chloro-3-methylphenol	11.66	107	196771	3431.47			
36)		11.83	141	339763	2957.53			
	Hexachlorocyclopentadiene	12.08	237	130628	3656.46			
40)		12.31		146231	3398.12			
41)	2,4,5-Trichlorophenol	12.38		160016	3440.25			
44)		12.62		155166	2758.47			
45)		12.81	65	161765	3083.26			
46)	Acenaphthylene	13.28	152	619174	3270.02			
47)	Dimethyl Phthalate	13.13	163	.472160	3087.86			
48)	2,6-Dinitrotoluene	13.23	165	117928	3177.40			
49)	Acenaphthene	13.57	154	347978	3121.27			
50)	3-Nitroaniline	13.50	138	119533	3271.13			
51)	2,4-Dinitrophenol	13.67	184	46240	3118.32			
52)	Dibenzofuran	13.86	168	573945	3092.30	ng/ml	92	
53)	4-Nitrophenol	13.86	109	73056	3448.86	ng/ml	# 1	
54)		13.89	165	155879	3365.17	ng/ml	97	
55)	2,3,4,6-Tetrachlorophenol	14.08	232	111944	3539.44	ng/ml	93	
	Fluorene	14.42	166	413028	3123.02	ng/ml	98	
	4-Chlorophenyl Phenyl Ethe	14.44	204	219459	3158.17	ng/ml	97	
	Diethyl Phthalate	14.30	149	448163	3110.83	ng/ml	99	
59)		14.50	138	112570	3157.47	ng/ml	98	
60)		14.55	198	82106	3166.95			
61)		14.64	169	312340	3467.71			λ
	Azobenzene	14.70	77	503218	3064.69			5.1
	4-Bromophenyl Phenyl Ether	15.24	248	120737	3033.17			di
	Hexachlorobenzene	15.31	284	139722	3137.81			1
	Pentachlorophenol	15.66	266	58908	3218.13			
	Phenanthrene	15.98	178	588917	2955.25			
70)	Anthracene	16.07	178	610172	3053.18			
	Carbazole	16.35	167		3002.73			
	Di-n-butyl Phthalate	16.98	149	731742	3066.40	ng/ml	97	
	Fluoranthene	17.92	202	619765	2975.35	ng/ml	99	
	Benzidine	18.18	184	374366	3863.92	ng/ml	99	
	Pyrene	18.29	202	648020	2976.62	ng/ml	99	
78)		19.42	149	619765 374366 648020 309589	2963.90	ng/ml	98	

(#) = qualifier out of range (m) = manual integration 0412F017.D 0412BNLL.M Wed Apr 13 11:29:56 2005

Gy/14/5

Page 2

Vial: 17

Data File : J:\MS10\DATA\041205\0412F017.D

Acq On : 12 Apr 2005 9:18 pm Operator: DHaderly

Sample : 8270LL @ 3.0ppm | SVM19-29E | KWG0505864 Inst : MS10 Misc : SVM\W0505864\17-ICV.H Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 13 06:37:35 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Wed Apr 13 06:36:18 2005

Response via: Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
79)	3,3'-Dichlorobenzidine	20.41	252	228631	3437.82 ng/ml	. 99
80)	Benz(a)anthracene	20.41	228	573813	3142.13 ng/ml	
81)	Chrysene	20.50	228	498718	3059.92 ng/ml	. 99
82)	Bis(2-ethylhexyl) Phthalat	20.62	149	412551	3052.87 ng/ml	. 99
84)	Di-n-octyl Phthalate	22.40	149	638703	2991.26 ng/ml	100
85)	Benzo(b)fluoranthene	23.31	252	463492	3121.90 ng/ml	. 99
86)	Benzo(k)fluoranthene	23.40	252	450090	3035.61 ng/ml	. 98
	Benzo(a)pyrene	24.27	252	431526	2995.64 ng/ml	. 99
88)	Indeno(1,2,3-cd)pyrene	27.04	276	376885	3080.59 ng/ml	. 99
89)	Dibenz(a,h)anthracene	27.12	278	369780	3091.10 ng/ml	. 98
90)	Benzo(g,h,i)perylene	27.57	276	379662	3059.44 ng/ml	. 98

^{(#) =} qualifier out of range (m) = manual integration 0412F017.D 0412BNLL.M Wed Apr 13 11:29:56 2005

(Not Reviewed)

Integrator, J:\MS10\METHODS\BNA\0412BNLL.M (RTE 8270LL ICAL

Method : J:\MS10\METHODS\BNA\0412BN Title : 8270LL ICAL Last Update : Wed Apr 13 06:36:18 2005 Response via : Initial Calibration

29,00 27.00 28.00 T,enelyneq(i,rl,g)ozneB T,e-Te-SEATHYS(AP,E) Shible Cebri 26,00 25,00 1,21b-enely199 Benzo(a)pyrene,TC 23.00 24.00 Benzelehillene, T Di-n-octyl Phthalate, TC 22.00 21.00 T,ethylhexyl) Chryselfic, C-ethylhexyl) Phthalate, T T,ehtleiseesielihteleistike,SAAS,B 17.00 18.00 19.00 20.00 Butyl Benzyl Phthalate,T Terphenyl-d14,S TIC: 0412F017.D Pyrene,T Denzidine, T Pluoranthene, TC T,etsishthq lytud-n-iQ T,elozedas D 16.00 Phenanthrengh Inracene, T Pentachlorophenol,TC THEXEROPPEDAY ELPERIAL ETHER, T 15,00 13.00 14.00 T, enellytitrideneood T, et is is it if it is it is in it is in it is in it is 7-Mitroaniline, T 12.00 10.00 11.00 T englighter T an englighter T 9.00 T NAREH REPORTED STATES TO THE STATES THE ST T,enilinA STATIONER 8.00 7.00 2-Fluorophenol,S 6.00 T, enimetria anothore out IV-M 5,00 Abundance 1800000 200000 1600000 800000 400000 1400000 200002 100000 Time-->

0412F017.D 0412BNLL.M Wed Apr 13 11:29:57

2005

74/H/E

Vial: 18

Data File : J:\MS10\DATA\041205\0412F018.D Operator: DHaderly

MS Integration Params: RTEINT.P

Quant Time: Apr 13 06:38:13 2005 Quant Results File: 0412BNLL.RES

Quant Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL Last Update : Wed Apr 13 06:36:18 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.74 10.68 13.52 15.93 20.42 24.40	152 136 164 188 240 264	60766 194762 105246 166618 135031 106004	1000.0 1000.0 1000.0	0 ng/ml	0.00 0.00 0.00 -0.01 -0.01
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	0.00 Range 30	99 - 128 82 - 139 172 - 126 330 - 157 244	0 Recove 0 Recove 0 Recove 0 Recove 0 Recove 0 Recove	ery = 0.00	ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenz 43) Biphenyl 67) Atrazine	8.12 9.35 11.40 ene 12.10 12.60 15.56	106 105 55 216 154 200	347686 130658 277314 570522	3485.13 3497.02 3594.20 3586.21 3704.68 3424.71	ng/ml# ng/ml ng/ml ng/ml	lue 96 62 96 98 98

-----(#) = qualifier out of range (m) = manual integration (m)

0412F018.D 0412BNLL.M Wed Apr 13 11:44:40 2005

Page 1

(QT Reviewed)

DHaderly

Vial: 18

MS10 1.00

Inst

Multiplr:

Integrator)

SVM19-30A | KWG050 8270LL CLP @ 3.0ppm | SVM\W0505864\18-ICV.H

Sample Misc

Quant Results File: 0412BNLL.RES MS Integration Params: RTEINT.P Quant Time: Apr 13 11:44 2005

J:\MS10\METHODS\BNA\0412BNLL.M (RTE 8270LL ICAL Method Title

2005 Wed Apr 13 06:36:18 Initial Calibration Response via Last Update

0412BNLL.M 0412F018.D

8.00

7.00

6.00

Time--> 5.00

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 20.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Results

Client: Project: **Battelle Memorial Institute** Novato Ballfields/G486063 Service Request: K2502554

Date Analyzed: 04/15/2005

Continuing Calibration Verification Summary Semi-Volatile Organic Compounds by GC/MS

Calibration Type:

Internal Standard

Analysis Method:

8270C

Calibration Date: 04/12/2005 Calibration ID: CAL4375

Analysis Lot: KWG0506208

Units: ng/ml

File ID:

J:\MS10\DATA\041505\0415F001.D J:\MS10\DATA\041505\0415F002.D

			Min	Average	CCV				
Analyte Name	Expected	Result	RF	RF	RF	% D	%Drift	Criteria	Curve Fit
1,2,4,5-Tetrachlorobenzene	3000	3100	0.01	0.735	0.750	2	NA	± 30 %	AverageRF
‡ Phenol	6000	5800	0.01	1.35	1.30	-4	NA	\pm 20 %	AverageRF
Bis(2-chloroethyl) Ether	3000	3000	0.01	1.12	1.12	0	NA	± 30 %	AverageRF
2-Chlorophenol	6000	5900	0.01	1.11	1.09	-2	NA	± 30 %	AverageRF
2-Methylphenol	6000	5800	0.01	0.845	0.814	-4	NA	± 30 %	AverageRF
Bis(2-chloroisopropyl) Ether	3000	2800	0.01	2.09	1.92	-8	NA	\pm 30 %	AverageRF
Acetophenone	3000	3000	0.01	1.64	1.66	2	NA	± 30 %	AverageRF
4-Methylphenol	6000	6100	0.01	1.23	1.24	1	NA	± 30 %	AverageRF
† N-Nitrosodi-n-propylamine	3000	2800	0.05	0.906	0.856	-5	NA	± 30 %	AverageRF
Hexachloroethane	3000	3000	0.01	0.632	0.630	0	NA	± 30 %	AverageRF
Nitrobenzene	3000	3000	0.01	1.41	1.40	-1	NA	± 30 %	AverageRF
Isophorone	3000	3000	0.01	0.617	0.617	0	NA	± 30 %	AverageRF
‡ 2-Nitrophenol	6000	6300	0.01	0.197	0.208	5	NA	± 20 %	AverageRF
2,4-Dimethylphenol	6000	6100	0.01	0.266	0.270	1	NA	± 30 %	AverageRF
Bis(2-chloroethoxy)methane	3000	3100	0.01	0.411	0.428	4	NA	± 30 %	AverageRF
‡ 2,4-Dichlorophenol	6000	6100	0.01	0.298	0.303	2	NA	± 20 %	AverageRF
Naphthalene	3000	3100	0.01	0.978	0.996	2	NA	± 30 %	AverageRF
4-Chloroaniline	3000	3000	0.01	0.457	0.464	2	NA	± 30 %	AverageRF
‡ Hexachlorobutadiene	3000	2900	0.01	0.245	0.241	-2	NA	± 20 %	AverageRF
Caprolactam	3000	2800	0.01	0.187	0.177	-5	NA	± 30 %	AverageRF
Benzaldehyde	3000	3200	0.01	0.910	0.962	6	NA	± 30 %	AverageRF
‡ 4-Chloro-3-methylphenol	6000	5800	0.01	0.286	0.277	- 3	NA	± 20 %	AverageRF
2-Methylnaphthalene	3000	2900	0.01	0.573	0.557	- 3	NA	± 30 %	AverageRF
† Hexachlorocyclopentadiene	3000	2300	0.05	0.333	0.252	-24	NA	± 30 %	AverageRF
‡ 2,4,6-Trichlorophenol	6000	6300	0.01	0.402	0.425	6	NA	± 20 %	AverageRF
2,4,5-Trichlorophenol	6000	6000	0.01	0.434	0.436	1	NA	± 30 %	AverageRF
Biphenyl	3000	3300	0.01	1.46	1.59	9	NA	± 30 %	AverageRF
2-Chloronaphthalene	3000	2800	0.01	0.525	0.484	-8	NA	± 30 %	AverageRF
2-Nitroaniline	3000	3100	0.01	0.490	0.501	2	NA	± 30 %	AverageRF
Dimethyl Phthalate	3000	3100	0.01	1.43	1.48	4	NA	± 30 %	AverageRF
2,6-Dinitrotoluene	3000	3200	0.01	0.346	0.370	7	NA	± 30 %	AverageRF
Acenaphthylene	3000	3000	0.01	1.77	1.79	1	NA	± 30 %	AverageRF
3-Nitroaniline	3000	3300	0.01	0.341	0.378	11	NA	± 30 %	AverageRF
‡ Acenaphthene	3000	3100	0.01	1.04	1.07	3	NA	± 30 %	AverageRF
† 2,4-Dinitrophenol	6000	4500	0.05	0.143	0.118	NA	-24	± 30 %	Quadratic
† 4-Nitrophenol	6000	5600	0.05	0.198	0.184	- 7	NA	± 30 %	AverageRF
Dibenzofuran	3000	3100	0.01	1.73	1.81	5	NA	± 30 %	AverageRF
2,4-Dinitrotoluene	3000	3200	0.01	0.432	0.462	7	NA	± 30 %	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

‡ CCC Compound

Printed: 4/19/2005 16:42:21 u:\Stealth\Crystal.rpt\Form7.rpt

Form 7 - Organic

Page 1 of 2 SuperSet Reference: RR47223

COLUMBIA ANALYTICAL SERVICES, INC.

QA/QC Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063 Service Request: K2502554

Date Analyzed: 04/15/2005

Continuing Calibration Verification Summary Semi-Volatile Organic Compounds by GC/MS

Calibration Type: Analysis Method:

Internal Standard

8270C

Calibration Date: 04/12/2005 **Calibration ID:** CAL4375

Analysis Lot: KWG0506208

Units: ng/ml

Analyte Name	Expected	Result	Min RF	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
Diethyl Phthalate	3000	3100	0.01	1.34	1.38	3	NA	± 30 %	AverageRF
Fluorene	3000	3200	0.01	1.23	1.31	6	NA	± 30 %	AverageRF
4-Chlorophenyl Phenyl Ether	3000	3200	0.01	0.648	0.685	6	NA	± 30 %	AverageRF
4-Nitroaniline	3000	3400	0.01	0.333	0.380	14	NA	± 30 %	AverageRF
2-Methyl-4,6-dinitrophenol	6000	5800	0.01	0.242	0.233	-4	NA	± 30 %	AverageRF
* N-Nitrosodiphenylamine	3000	3100	0.01	0.841	0.880	5	NA	± 20 %	AverageRF
4-Bromophenyl Phenyl Ether	3000	3000	0.01	0.233	0.234	1	NA	± 30 %	AverageRF
Hexachlorobenzene	3000	3000	0.01	0.260	0.258	-1	NA	± 30 %	AverageRF
Atrazine	3000	3000	0.01	0.242	0.245	1 -	NA	± 30 %	AverageRF
‡ Pentachlorophenol	6000	5300	0.01	0.107	0.0939	-12	NA	± 20 %	AverageRF
Phenanthrene	3000	3000	0.01	1.16	1.16	-1	NA	± 30 %	AverageRF
Anthracene	3000	3000	0.01	1.17	1.18	1	NA	± 30 %	AverageRF
Carbazole	3000	3000	0.01	1.06	1.07	1	NA	± 30 %	AverageRF
Di-n-butyl Phthalate	3000	3000	0.01	1.39	1.38	-1	NA	± 30 %	AverageRF
‡ Fluoranthene	3000	3000	0.01	1.22	1.23	1	NA	± 20 %	AverageRF
Pyrene	3000	3100	0.01	1.55	1.62	4	NA	± 30 %	AverageRF
Butyl Benzyl Phthalate	3000	3000	0.01	0.745	0.747	0	NA	± 30 %	AverageRF
3,3'-Dichlorobenzidine	6000	6400	0.01	0.474	0.509	7	NA	± 30 %	AverageRF
Benz(a)anthracene	3000	3000	0.01	1.30	1.29	-1	NA	± 30 %	AverageRF
Chrysene	3000	3000	0.01	1.16	1.16	0	NA	± 30 %	AverageRF
Bis(2-ethylhexyl) Phthalate	3000	3000	0.01	0.964	0.973	1	NA	± 30 %	AverageRF
‡ Di-n-octyl Phthalate	3000	3100	0.01	2.03	2.09	3	NA	± 20 %	AverageRF
Benzo(b)fluoranthene	3000	3100	0.01	1.41	1.44	2	NA	± 30 %	AverageRF
Benzo(k)fluoranthene	3000	3100	0.01	1.41	1.46	3	NA	± 30 %	AverageRF
‡ Benzo(a)pyrene	3000	3100	0.01	1.37	1.41	3	NA	± 20 %	AverageRF
Indeno(1,2,3-cd)pyrene	3000	2900	0.01	1.17	1.13	-3	NA	± 30 %	AverageRF
Dibenz(a,h)anthracene	3000	3000	0.01	1.14	1.12	-2	NA	± 30 %	AverageRF
Benzo(g,h,i)perylene	3000	2800	0.01	1.18	1.12	-5	NA	± 30 %	AverageRF
2-Fluorophenol	3000	2800	0.01	1.10	1.03	- 6	NA	± 30 %	AverageRF
Phenol-d6	3000	3000	0.01	1.33	1.33	0	NA	± 30 %	AverageRF
Nitrobenzene-d5	3000	3000	0.01	1.34	1.34	0	NA	± 30 %	AverageRF
2-Fluorobiphenyl	3000	3100	0.01	1.30	1.35	4	NA	± 30 %	AverageRF
2,4,6-Tribromophenol	3000	3100	0.01	0.122	0.124	2	NA	± 30 %	AverageRF
Terphenyl-d14	3000	3100	0.01	0.922	0.941	2	NA	± 30 %	AverageRF
‡ 1,4-Dichlorobenzene	3000	3000	0.01	1.41	1.43	1	NA	± 20 %	AverageRF

Results flagged with an asterisk (*) indicate values outside control criteria.

† SPCC Compound

u:\Stealth\Crystal.rpt\Form7.rpt

‡ CCC Compound

Printed: 4/19/2005 16:42:21 Form 7 - Organic

Page 2 of 2 SuperSet Reference: RR47223

Exception Report

Data File: J:\MS10\DATA\041505\0415F001.D

Lab ID: KWG0506208-2

RunType: CCV Matrix: **SOLID** Date Acquired: Date Quantitated:

04/15/2005 10:13 04/18/2005 10:18

Batch ID: Analysis Method: MethodJoinID:

KWG0506208 8270C

MJ142

Sample Exceptions

Exception Categories	Result	Low Limit	High Limit	Pass	Fail
Tune Window	NA	NA	NA	х	
ICAL Pass/Fail	NA	NA	NA	Х	
ICAL Average RSD	NA	NA	NA	X	
ICAL Analyte Recovery	NA	NA	NA	х	
Initial Calibration Minimum RF	NA	NA	NA	Х	
Initial Calibration SPCC/CCC	NA	NA	NA	Х	
Second Source ICAL Verification	NA	NA	NA	Х	
Internal Standards	NA	NA	NA	X	
Analyte Co-elution	NA	NA	NA	Х	
Retention Time	NA	NA	NA	Х	
Below Lowest ICAL Level	NA	NA	NA	Х	
Above Highest ICAL Level	NA	NA	NA	х	
Enviroquant/Stealth Calibration Check	NA	NA	NA	х	***************************************

Primary Review:

Printed: 04/18/2005 15:32:03

u:\Stealth\Crystal.rpt\except2.rpt

Quantitation Report

Bottle ID: Prod Code:

8270-LL

Tier:

Collect Date:

Matrix: Receive Date: SOLID 04/18/2005

Analysis Lot: Analysis Method: KWG0506208

8270C

Prep Lot:

Prep Ref:

Prep Method:

Prep Date:

Quant Method:

J:\MS10\METHODS\BNA\0412BNLL.M

Title:

Tune Ref:

J:\MS10\DATA\041505\0415T001.D

MB Ref:

CAL4375

Method ID:

Calibration ID:

Report Group:

MJ142

Quant based on Method

Data File: Acqu Date: J:\MS10\DATA\041505\0415F001.D

04/15/2005 10:13

Run Type: CCV

Lab ID: KWG0506208-2 Quant Date:

04/18/2005 10:18

Instrument: Vial:

MS10

Dilution:

1.0

Soln Conc. Units: ng/ml

Internal Standard Compounds

IS Ref	Parameter Name	RT	RT Dev	Quant Mass	Response	Solution Conc	Area Criteria
1	1,4-Dichlorobenzene-d4	8.62	-0.12	152	80804	1,000.00	OK
2	Naphthalene-d8	10.56	-0.14	136	263490	1,000.00	OK
3	Acenaphthene-d10	13.38	-0.14	164	125337	1,000.00	OK
1	Phenanthrene-d10	15.80	-0.14	188	216469	1,000.00	OK
5	Chrysene-d12	20.26	-0.18	240	167838	1,000.00	OK
5	Perylene-d12	24.17	-0.25	264	119483	1,000.00	OK

Surrogate Compounds

IS Ref	Parameter Name	RT	RT Dev	RRT Dev	Quant Mass	Response	Solution Conc	%Rec	%Rec Limits	Rp	pt?
1	2-Fluorophenol	6.84	***************************************		112	249682	2,811	***************************************	11-87	NA	
1	Phenol-d6	8.16			99	323174	3,008		20-99	NA	
1	Nitrobenzene-d5	9.46			82	325440	3,009		10-99	NA	
3	2-Fluorobiphenyl	12.31			172	507383	3,118		10-104	NA	
4	2,4,6-Tribromophenol	14.68			330	80381	3,055		23-113	NA	
5	Terphenyl-d14	18.44			244	473699	3,061				

Targ	get Compounds					Final	Conc. Units:			
IS Ref	Parameter Name	RT	RT Dev	RRT Dev	QuantM ass	Response	Solution Conc	Final Conc	Q	Rpt?
1	N-Nitrosodimethylamine	5.17			42	195023	2,303			
1	Pyridine	5.23			79	210097	2,216			
1	Bis(2-chloroethyl) Ether	8.26			93	271791	3,011			
1	Phenol	8.19		V, ,	94	629916	5,777			
1	Aniline	8.15			93	415135	2,900			
1	2-Chlorophenol	8.33			128	526933	5,882			
1	1,3-Dichlorobenzene	8.53			146	332686	3,037			
1	1,4-Dichlorobenzene	8.64			146	347392	3,043			
1	1,2-Dichlorobenzene	8.85			146	313741	2,999			
1	Benzyl Alcohol	8.85			108	184223	2,988	···········	,	

U: Undetected at or above MDL

04/18/2005 15:20:56

 $u:\Stealth\Crystal.rpt\quantl.rpt$

I: Analyte detected above MDL, but below MRL B: Hit above MRL also found in Method Blank

E: Analyte concentration above high point of ICAL

N: Presumptive evidence of compound

D: Result from dilution

m: Manual integration performed

d: Compound manually deleted
NR: Analyte not reported from this analysis

^{*:} Result fails acceptance criteria

^{#:} Acceptance criteria not applicable
?: Insufficient information to determine acceptance

e: Result >= MRL, but MRL less than low point of ICAL c: check for co-elution

Data File: J:\MS10\DATA\041505\0415F001.D

Acqu Date:

04/15/2005 10:13

Run Type:

Lab ID:

CCV KWG0506208-2 Quant Date:

04/18/2005 10:18

Instrument: Vial: Dilution:

MS10

Soln Conc. Units:

1.0

ng/ml

arg	get Compounds	······		·····		1.4.				
IS Ref	Parameter Name	RT	RT Dev	RRT Dev	QuantM ass	Response	Solution Conc	Final Conc	Q	Rpt?
1	Bis(2-chloroisopropyl) Ether	9.04			45	465697	2,754			
1	2-Methylphenol	9.05			107	394414	5,777			
1	Hexachloroethane	9.36			117	152619	2,991			
1	N-Nitrosodi-n-propylamine	9.26			70	207560	2,836			
1	4-Methylphenol	9.29			107	601698	6,070			
1	Nitrobenzene	9.49			77	338397	2,974			
2	Isophorone	9.89			82	487616	2,999			
2	2-Nitrophenol	9.98			139	328147	6,314			
2	2,4-Dimethylphenol	10.10			122	427200	6,089			
2	Bis(2-chloroethoxy)methane	10.22			93	338252	3,123			
2	2,4-Dichlorophenol	10.38			162	479115	6,098			
2	Benzoic Acid	10.43			122	171731	5,493			
2	1,2,4-Trichlorobenzene	10.48			180	307523	3,114			
2	Naphthalene	10.59			128	787122	3,054			
2	4-Chloroaniline	10.73			127	366896	3,047	w		
2	Hexachlorobutadiene	10.79			225	190206	2,943			
2	4-Chloro-3-methylphenol	11.54			107	437250	5,799			
2	2-Methylnaphthalene	11.71			141	440648	2,917			
3	Hexachlorocyclopentadiene	11.94			237	94865	2,270			
3	2,4,6-Trichlorophenol	12.19			196	319325	6,344			
3	2,4,5-Trichlorophenol	12.26			196	328139	6,031			
3	2-Chloronaphthalene	12.49			127	182144	2,768			
3	2-Nitroaniline	12.69			65	188351	3,069			
3	Acenaphthylene	13.15			152	674396	3,045			
3	Dimethyl Phthalate	13.01			163	558141	3,121			
3	2,6-Dinitrotoluene	13.10			165	139168	3,206			
3	Acenaphthene	13.44			154	403015	3,091			
3	3-Nitroaniline	13.37			138	142024	3,323			
3	2,4-Dinitrophenol	13.56			184	88617	4,538			
3	Dibenzofuran	13.72			168	682017	3,141			
3	4-Nitrophenol	13.72			109	138422	5,587			
3	2,4-Dinitrotoluene	13.76			165	173541	3,203			
3 -	2,3,4,6-Tetrachlorophenol	13.95			232	238171	6,438			
3	Fluorene	13.93			166	492098	3,181			
3	4-Chlorophenyl Phenyl Ether	14.31			204	257421	3,167			
3	Diethyl Phthalate	14.16			149	519896	3,085			
3	4-Nitroaniline	14.16			149	142997	3,083 3,429			
3	2-Methyl-4,6-dinitrophenol	14.38			198	175339	5,782			
										
3	N-Nitrosodiphenylamine Azobenzene	14.51 14.56			169 77	331030 585999	3,142 3,051			
<i>3</i>	4-Bromophenyl Phenyl Ether	15.09			248	151778	3,015			
'	, 2. oniophonj. i nonji Eulei				270	101//0	2,012			

U: Undetected at or above MDL

B: Hit above MRL also found in Method Blank
E: Analyte concentration above high point of ICAL

N: Presumptive evidence of compound

D: Result from dilution

m: Manual integration performed d: Compound manually deleted NR: Analyte not reported from this analysis

^{*:} Result fails acceptance criteria

^{#:} Acceptance criteria not applicable
?: Insufficient information to determine acceptance
e: Result >= MRL, but MRL less than low point of ICAL

c: check for co-elution

Data File:

J:\MS10\DATA\041505\0415F001.D

Acqu Date: Run Type:

Lab ID:

04/15/2005 10:13

CCV

KWG0506208-2

Quant Date:

04/18/2005 10:18

Instrument: Vial: Dilution:

MS10

1.0

Soln Conc. Units: ng/ml

Target Compounds Final Conc. Units:

IS Ref	Parameter Name	RT	RT Dev	RRT Dev	QuantM ass	Response	Solution Conc	Final Conc	Q	Rpt?
4	Pentachlorophenol	15.52			266	121997	5,270			<u>.</u>
4	Phenanthrene	15.84			178	752192	2,985			
4	Anthracene	15.92			178	768405	3,041			
4	Carbazole	16.22			167	697566	3,034			
4	Di-n-butyl Phthalate	16.83			149	896820	2,972			
4	Fluoranthene	17.77			202	796484	3,024			
5	Benzidine	18.05			184	640115	5,885			
5	Pyrene	18.14			202	815038	3,128			
5	Butyl Benzyl Phthalate	19.28			149	376306	3,010			
5	3,3'-Dichlorobenzidine	20.24			252	512719	6,442			
5	Benz(a)anthracene	20.24			228	648172	2,966			
5	Chrysene	20.32			228	583061	2,989		***************************************	
5	Bis(2-ethylhexyl) Phthalate	20.43			149	490161	3,031			
6	Di-n-octyl Phthalate	22.15			149	748743	3,080			
6	Benzo(b)fluoranthene	23.04			252	517194	3,059			
6	Benzo(k)fluoranthene	23.13			252	521816 m	3,091			
6	Benzo(a)pyrene	24.02			252	505132	3,080			
6	Indeno(1,2,3-cd)pyrene	26.85		*****	276	403707 m	2,898			
6	Dibenz(a,h)anthracene	26.92			278	401926	2,951			
6	Benzo(g,h,i)perylene	27.38			276	401474	2,841			

U: Undetected at or above MDL
J: Analyte detected above MDL, but below MRL
B: Hit above MRL also found in Method Blank
E: Analyte concentration above high point of ICAL

N: Presumptive evidence of compound

D: Result from dilution

m: Manual integration performed d: Compound manually deleted NR: Analyte not reported from this analysis

^{*:} Result fails acceptance criteria
#: Acceptance criteria not applicable
?: Insufficient information to determine acceptance
e: Result >= MRL, but MRL less than low point of ICAL
c: check for co-elution

Data File : J:\MS10\DATA\041505\0415F001.D Vial: 1 Acq On : 15 Apr 2005 10:13 Sample : 8270-LL @ 3/6ppm SVM19-29A Misc : Operator: JGISH Inst : MS10 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 15 10:56:57 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Fri Apr 15 10:56:49 2005 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Units Dev	(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12	8.62 10.56 13.38 15.80 20.26	152 136 164 188 240	80804 263490 125337 216469 167838	1000.00 ng/ml 1000.00 ng/ml 1000.00 ng/ml 1000.00 ng/ml 1000.00 ng/ml	0.00 0.00 0.00 0.00
83) Perylene-d12	24.17		119483	1000.00 ng/ml	0.00
Crist on Monitorius Company				.	
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000	6.84 Range 38	112 - 110	249682 Recove	_·	-0.02
7) Phenol-d6	8.16	99 - 128	323174	3007.98 ng/ml	0.00
	9.46 Range 30	82 - 139	325440	3009.27 ng/ml	0.00
	12.31 Range 37	172 - 126	Recove	3117.62 ng/ml ery = 124.70 %	0.00
	14.68 Range 38	330 - 157	Recove		0.00
77) Terphenyl-d14 Spiked Amount 2500.000	18.44 Range 54	244 - 158		3060.89 ng/ml ery = 122.44%	0.02
Target Compounds				Ozza	alue
Target Compounds 2) N-Nitrosodimethylamine	5.17	42	195023	Qva 2303.23 ng/ml	alue 93
2) N-Nitrosodimethylamine3) Pyridine	5.23	79	195023 210097		
2) N-Nitrosodimethylamine3) Pyridine6) Bis(2-chloroethyl) Ether	5.23 8.26	79 93	210097 271791	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml	93 97 99
2) N-Nitrosodimethylamine3) Pyridine6) Bis(2-chloroethyl) Ether8) Phenol	5.23 8.26 8.19	79 93 94	210097 271791 629916	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml	93 97 99 93
 2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 	5.23 8.26 8.19 8.15	79 93 94 93	210097 271791 629916 415135	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml	93 97 99 93 91
 2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 	5.23 8.26 8.19 8.15 8.33	79 93 94 93 128	210097 271791 629916 415135 526933	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml	93 97 99 93 91 98
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene	5.23 8.26 8.19 8.15 8.33 8.53	79 93 94 93 128 146	210097 271791 629916 415135 526933 332686	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml	93 97 99 93 91 98 97
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene	5.23 8.26 8.19 8.15 8.33 8.53 8.64	79 93 94 93 128 146 146	210097 271791 629916 415135 526933 332686 347392	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml	93 97 99 93 91 98 97 99
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85	79 93 94 93 128 146 146	210097 271791 629916 415135 526933 332686 347392 313741	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml	93 97 99 93 91 98 97 99
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85	79 93 94 93 128 146 146 146	210097 271791 629916 415135 526933 332686 347392 313741 184223	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml	93 97 99 93 91 98 97 99
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85 8.85 9.04	79 93 94 93 128 146 146 146 108 45	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml	93 97 99 93 91 98 97 99 99
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85 9.04 9.05	79 93 94 93 128 146 146 146 107	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml	93 97 99 91 98 97 99 99 99
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85 9.04 9.05 9.36	79 93 94 93 128 146 146 146 108 45 107 117	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml	93 97 99 91 98 97 99 99 85 99 83
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85 9.04 9.05 9.36 9.26	79 93 94 93 128 146 146 146 108 45 107 117 70	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619 207560	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml 2836.36 ng/ml	93 97 99 91 98 99 99 99 85 98 94
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85 9.04 9.05 9.36 9.26 9.29	79 93 94 93 128 146 146 146 108 45 107 117 70	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619 207560 601698	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml 2836.36 ng/ml 6070.34 ng/ml	93 97 99 91 98 99 99 85 99 84 99
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85 9.04 9.05 9.36 9.26 9.29 9.49	79 93 94 93 128 146 146 146 107 117 70 107 77	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619 207560 601698 338397	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2836.36 ng/ml 6070.34 ng/ml 2973.83 ng/ml	93 97 99 91 98 99 99 99 89 99 99 99 99 99
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone	5.23 8.26 8.19 8.15 8.33 8.53 8.64 8.85 9.04 9.05 9.36 9.26 9.29 9.49 9.89	79 93 94 93 128 146 146 146 107 117 70 107 77 82	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619 207560 601698 338397 487616	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2998.87 ng/ml	93 97 99 93 91 98 97 99 99 85 99 83 94 99 95
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol	5.23 8.26 8.19 8.15 8.33 8.64 8.85 8.85 9.04 9.05 9.36 9.26 9.29 9.49 9.89 9.98	79 93 94 93 128 146 146 146 107 117 70 107 77 82 139	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619 207560 601698 338397 487616 328147	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2993.83 ng/ml 2973.83 ng/ml 2998.87 ng/ml 6314.32 ng/ml	93 97 99 93 91 98 97 99 99 85 99 83 94 99 90 91
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol 26) 2,4-Dimethylphenol	5.23 8.26 8.19 8.15 8.33 8.64 8.85 8.85 9.04 9.05 9.36 9.29 9.49 9.89 9.98	79 93 94 93 128 146 146 146 107 117 70 107 77 82 139 122	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619 207560 601698 338397 487616 328147 427200	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 5899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2836.36 ng/ml 2973.83 ng/ml 2973.83 ng/ml 2998.87 ng/ml 6314.32 ng/ml 6088.50 ng/ml	93 97 99 93 91 98 97 99 99 85 99 83 99 90 100
2) N-Nitrosodimethylamine 3) Pyridine 6) Bis(2-chloroethyl) Ether 8) Phenol 9) Aniline 10) 2-Chlorophenol 11) 1,3-Dichlorobenzene 12) 1,4-Dichlorobenzene 13) 1,2-Dichlorobenzene 14) Benzyl Alcohol 15) Bis(2-chloroisopropyl) E 16) 2-Methylphenol 18) Hexachloroethane 19) N-Nitrosodi-n-propylamin 20) 4-Methylphenol 22) Nitrobenzene 24) Isophorone 25) 2-Nitrophenol	5.23 8.26 8.19 8.15 8.33 8.64 8.85 8.85 9.04 9.05 9.36 9.29 9.49 9.89 9.98	79 93 94 93 128 146 146 146 107 117 70 107 77 82 139	210097 271791 629916 415135 526933 332686 347392 313741 184223 465697 394414 152619 207560 601698 338397 487616 328147 427200	2303.23 ng/ml 2215.78 ng/ml 3011.11 ng/ml 5777.41 ng/ml 2899.72 ng/ml 5882.10 ng/ml 3037.29 ng/ml 3043.35 ng/ml 2998.81 ng/ml 2988.12 ng/ml 2753.92 ng/ml 5777.31 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2990.73 ng/ml 2993.83 ng/ml 2973.83 ng/ml 2998.87 ng/ml 6314.32 ng/ml	93 97 99 93 91 98 97 99 99 85 99 83 94 99 90 91

MS Integration Params: RTEINT.P

Quant Time: Apr 15 10:56:57 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Fri Apr 15 10:56:49 2005

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Ui	nit	Qvalue
28)	2,4-Dichlorophenol	10.38	162	479115	6097.98	ng/ml	96
29)	Benzoic Acid	10.43	122	171731	5493.22	ng/ml	91
30)	1,2,4-Trichlorobenzene	10.48	180	307523	3113.78	ng/ml	99
31)	Naphthalene	10.59	128	787122	3054.26	ng/ml	99
32)	4-Chloroaniline	10.73	127	366896	3046.63	ng/ml	94
33)	Hexachlorobutadiene	10.79	225	190206	2943.26	ng/ml	100
35)	4-Chloro-3-methylphenol	11.54	107	437250	5799.02	ng/ml	96
36)	2-Methylnaphthalene	11.71	141	440648	2917.09	ng/ml	99
39)	Hexachlorocyclopentadiene	11.94	237	94865	2270.17	ng/ml	100
40)	2,4,6-Trichlorophenol	12.19	196	319325	6343.98	ng/ml	99
41)	2,4,5-Trichlorophenol	12.26	196	328139	6031.34	ng/ml	96
44)	2-Chloronaphthalene	12.49	127	182144	2768.32	ng/ml	97
45)	2-Nitroaniline	12.69	65	188351	3069.18	ng/ml	97
46)	Acenaphthylene	13.15	152	674396	3044.96		99
47)	Dimethyl Phthalate	13.01	163	558141	3120.62		100
48)	2,6-Dinitrotoluene	13.10	165	139168	3205.71	ng/ml	100
49)	Acenaphthene	13.44	154	403015	3090.51		99
50)	3-Nitroaniline	13.37	138	142024	3322.78		98
51)	2,4-Dinitrophenol	13.56	184	88617	4537.83	ng/ml	88
52)	Dibenzofuran	13.72	168	682017	3141.49		88
53)	4-Nitrophenol	13.73	109	138422	5586.68		# 70
54)	2,4-Dinitrotoluene	13.76	165	173541	3202.95		88
55)	2,3,4,6-Tetrachlorophenol	13.95	232	238171	6438.02		85
56)	Fluorene	14.29	166	492098	3181.09		99
57)	4-Chlorophenyl Phenyl Ethe	14.31	204	257421	3167.05		94
58)	Diethyl Phthalate	14.16	149	519896	3085.21		98
59)	4-Nitroaniline	14.38	138	142997	3429.04		97
60)	2-Methyl-4,6-dinitrophenol	14.44	198	175339	5781.95		92
61)	N-Nitrosodiphenylamine	14.51	169	331030	3142.04		99
62)	Azobenzene	14.56	77	585999	3051.10		97
65)	4-Bromophenyl Phenyl Ether	15.09	248	151778	3015.26		93
66)	Hexachlorobenzene	15.17	284	167758	2979.24		86
68)	Pentachlorophenol	15.52	266	121997	5270.34		99
69)	Phenanthrene	15.84	178	752192	2984.89		100
70)	Anthracene	15.92	178	768405	3040.54		100
	Carbazole	16.22	167	697566	3034.46		99
	Di-n-butyl Phthalate	16.83	149	896820	2971.91		98
	Fluoranthene	17.77	202	796484	3023.76		99
	Benzidine	18.05	184		5884.99		99
	Pyrene	18.14			3128.27		99
78)	Butyl Benzyl Phthalate	19.28	149	376306	3010.30	ng/ml	96

^{(#) =} qualifier out of range (m) = manual integration 0415F001.D 0412BNLL.M Fri Apr 15 11:01:41 2005

MS Integration Params: RTEINT.P

Quant Time: Apr 15 10:56:57 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Fri Apr 15 10:56:49 2005

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Un	nit	Qvalue
80) 81) 82) 84) 85) 86) 87) 88)	3,3'-Dichlorobenzidine Benz(a) anthracene Chrysene Bis(2-ethylhexyl) Phthalat Di-n-octyl Phthalate Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene	20.24 20.32 20.43 22.15 23.04 23.13 24.02 26.85 26.92	252 228 228 149 149 252 252 252 276 278	401926	6441.96 2965.75 2989.23 3030.82 3079.50 3059.31 2981.08 3079.50 2897.91 2950.60	ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml ng/ml	99 97 99 98 99 99
90)	Benzo(g,h,i)perylene	27.38	276	401474	2841.16	ng/ml	98

⁽⁴⁾

29,00

28.00

27.00

26.00

25.00

24.00

23,00

22.00

21.00

20,00

18.00 19.00

10.00

9.00

8.00

6.00

Cime-->

T,ensl(n,i)perylene,T T, eTester HARRIERE (A; E) Sried (Application) 0412BNLL.RES Perylene-d12,1 Benzo(a)pyrene,TC Benzodbillo(R) The Bank of The Theore, T JGISH MS10 1.00 Di-n-octyl Phthalate, TC Quant Results File: Operator: (RTE Integrator) Vial Multiplr T, Chryseng (2-ethylhexyl) Phthalate, T T, efficienzaciontole(os) Isroe, 8 Inst Butyl Benzyl Phthalate,T TIC: 0415F001.D Terphenyl-d14,S Pyrene,T T.enibizne8 Fluoranthene, TC 16.00 17.00 Di-n-butyl Phthalate, T J:\MS10\METHODS\BNA\0412BNLL.M 8270LL ICAL Carbazole,T T, enerth grass ThinA OT, lone for ophenol, TC 11.00 12.00 13.00 14.00 15.00 Hexachlugusunghenyl Phenyl Ether, T J:\MS10\DATA\041505\0415F001 2005 15 Apr 2005 10:13 8270-LL @ 3/6ppm SVM19-29A Tilonardomorphental Tilona T əlisisrind iydiəribi Özünind ər.x T,ənəlyinindən ələri inənəridiri saqəz ƏT,ənəndindənəəA T<u>lananaridiri saqəzə</u> T,lonanqo**r**ilahari olonlində b.x Fri Apr 15 10:56:49 Initial Calibration Z-Nitroaniline, T ⊃T,lonendorolidini∓,fohelgiqweligidotolidis 2.Chloronendere,T.enelentindenorolidi⊃-S Params: RTEINT.P 15 11:01 2005 T.-Methylnaphthallene, T. Pethylnaphthallene, T. Hexachlorocyclopentadiene, T. 4-Chloro-3-methylphenol, TC BisC.S-chloroethoxy)methane, T T.2.4-Trichloppenseme T.2.4-Trichloppenseme T. 2,4-Dichlorophenol,TC T,lonertqlythemiG-4,S DT,lonertqoutiN-S T, eneğin**ententente** (**Vrentere). T**. heri T, eneğinentententente (Yaranda karanda karanda (Yaranda Karanda OT, and Send of Ording Office, TC Quant Time: Apr MS Integration 7.00 Response via Last Update 2-Fluorophenol, S File Acq On Sample Method Title 5.00 T,enimethylamine,T Data Misc 2800000 2600000 2400000 200000 220000 2000000 1800000 1400000 400000 1600000 823

(QT Reviewed)

Quantitation Report

MS Integration Params: RTEINT.P Quant Time: Apr 15 11:01 2005

Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

MS Integration Params: RTEINT.P Quant Time: Apr 18 10:18 2005

Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

MS Integration Params: RTEINT.P

Quant Time: Apr 15 11:01 2005 Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

MS Integration Params: RTEINT.P Quant Time: Apr 15 11:01 2005

Quant Results File: temp.res

Method : J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Exception Report

J:\MS10\DATA\041505\0415F002.D Data File:

Lab ID: KWG0506208-2

RunType: CCVSOLID Matrix:

Date Acquired: Date Quantitated: Batch ID:

04/15/2005 11:01 04/15/2005 11:33

Analysis Method:

MethodJoinID:

KWG0506208 8270C

MJ142

Sample Exceptions

Exception Categories	Result	Low Limit	High Limit	Pass	Fail
Tune Window	NA	NA	NA	х	
ICAL Pass/Fail	NA	NA	NA	Х	***************************************
ICAL Average RSD	NA	NA	NA	Х	
ICAL Analyte Recovery	NA	NA	NA	х	
Initial Calibration Minimum RF	NA	NA	NA	х	***************************************
Initial Calibration SPCC/CCC	NA	NA	NA	Х	
Second Source ICAL Verification	NA	NA	NA	х	
Internal Standards	NA	NA	NA	х	
Analyte Co-elution	NA	NA	NA	х	
Retention Time	NA	NA	NA	х	
Below Lowest ICAL Level	NA	NA	NA	х	
Above Highest ICAL Level	NA	NA	NA	х	· · · · · · · · · · · · · · · · · · ·
Enviroquant/Stealth Calibration Check	NA	NA	NA	X	

Secondary Review: co y/19/

Printed: 04/18/2005 15:32:09 $u: \Stealth \Crystal.rpt \except 2.rpt$

1 of 1 Page

Quantitation Report

Bottle ID:

Prod Code:

8270-LL

Tier:

Collect Date:

Matrix:

Receive Date:

Report Group:

SOLID

04/18/2005

Analysis Lot:

KWG0506208

Analysis Method: 8270C

Prep Lot:

Prep Method:

Prep Date:

Prep Ref:

Quant Method:

J:\MS10\METHODS\BNA\0412BNLL.M

Title:

Tune Ref: MB Ref:

J:\MS10\DATA\041505\0415T001.D

Calibration ID:

CAL4375

Method ID:

MJ142

Quant based on Method

Data File: Acqu Date: J:\MS10\DATA\041505\0415F002.D

04/15/2005 11:01

CCV

Run Type: Lab ID: KWG0506208-2 Quant Date:

04/15/2005 11:33

Instrument:

MS10

Vial: Dilution:

Final Conc. Units:

1.0

Soln Conc. Units:

ng/ml

Internal Standard Compounds

IS Ref	Parameter Name	RT	RT Dev	Quant Mass	Response	Solution Conc	Area Criteria
1	1,4-Dichlorobenzene-d4	8.62	-0.13	152	66215	1,000.00	OK
2	Naphthalene-d8	10.55	-0.13	136	213819	1,000.00	OK
3	Acenaphthene-d10	13.37	-0.14	164	106564	1,000.00	OK
4	Phenanthrene-d10	15.79	-0.15	188	174402	1,000.00	OK
5	Chrysene-d12	20.24	-0.19	240	127566	1,000.00	OK

Surrogate Compounds

IS			RT	RRT	Quant		Solution		%Rec	
Ref	Parameter Name	RT	Dev	Dev	Mass	Response	Conc	%Rec	Limits	Rpt?

Target Compounds

IS Ref	Parameter Name	RT	RT Dev	RRT Dev	QuantM ass	Response	Solution Conc	Final Conc	Q	Rpt?
1	Benzaldehyde	7.99		***************************************	106	191132	3,172			
1	Acetophenone	9.23			105	329942	3,045			
2	Caprolactam	11.27			55	113394	2,841			
3	1,2,4,5-Tetrachlorobenzene	11,97			216	239614	3,060			
3	Biphenyl	12.46			154	509067	3,265			
4	Atrazine	15.43			200	128199	3,042			

u:\Stealth\Crystal.rpt\quant1.rpt

U: Undetected at or above MDL

J: Analyte detected above MDL, but below MRL

B: Hit above MRL also found in Method Blank E: Analyte concentration above high point of ICAL N: Presumptive evidence of compound

Printed: 04/18/2005 15:21:23

D: Result from dilution

m: Manual integration performed d: Compound manually deleted

NR: Analyte not reported from this analysis

^{*:} Result fails acceptance criteria

^{#:} Acceptance criteria not applicable
?: Insufficient information to determine acceptance

e: Result >= MRL, but MRL less than low point of ICAL

c: check for co-elution

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 15 11:32:29 2005 Quant Results File: 0412BNLL.RES

Quant Method: J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator)

Title : 8270LL ICAL

Last Update : Fri Apr 15 10:56:49 2005

Response via : Initial Calibration

DataAcq Meth : BNALL

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev(Min)
1) 1,4-Dichlorobenzene-d4 23) Naphthalene-d8 37) Acenaphthene-d10 63) Phenanthrene-d10 74) Chrysene-d12 83) Perylene-d12	8.62 10.55 13.37 15.79 20.24 24.15		66215 213819 106564 174402 127566 94489	1000.00 1000.00 1000.00	0 ng/ml 0 ng/ml 0 ng/ml	0.00 -0.01 0.00 -0.01 -0.02
System Monitoring Compounds 4) 2-Fluorophenol Spiked Amount 3750.000 7) Phenol-d6 Spiked Amount 3750.000 21) Nitrobenzene-d5 Spiked Amount 2500.000 42) 2-Fluorobiphenyl Spiked Amount 2500.000 64) 2,4,6-Tribromophenol Spiked Amount 3750.000 77) Terphenyl-d14 Spiked Amount 2500.000	Range 38 0.00	99 - 128 82 - 139 172 - 126 330 - 157 244	0 Recove: 0d Recove: 0d Recove: 0 Recove: 0 Recove: 0d Recove:	ry = 0.00	ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%# ng/ml 0.00%#	
Target Compounds 5) Benzaldehyde 17) Acetophenone 34) Caprolactam 38) 1,2,4,5-Tetrachlorobenz 43) Biphenyl 67) Atrazine	7.99 9.23 11.27 ene 11.97 12.46 15.43	106 105 55 216 154 200	329942 : 113394 : 239614 : 509067 :	3172.45 3045.46 2841.28 3060.35 3264.74 3041.62	ng/ml ng/ml ng/ml ng/ml	lue 99 97 98 99 100

^{(#) =} qualifier out of range (m) = manual integration 0415F002.D 0412BNLL.M Fri Apr 15 11:34:13 2005

J:\MS10\DATA\041505\0415F002 15 Apr 2005 11:01 8270-LL CLP @ 3Ppm SVM19-28B Data File Acq On

Sample

Misc

MS Integration Params: RTEINT.P Quant Time: Apr 15 11:33 2005

2 JGISH Operator: Inst

Vial:

MS10 1.00

Multiplr

0412BNLL.RES Quant Results File:

J:\MS10\METHODS\BNA\0412BNLL.M (RTE Integrator) 8270LL ICAL 2005 Fri Apr 15 10:56:49 Initial Calibration Last Update Method Title

Response via

22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 Perylene-d12,1 18.00 19.00 20.00 21.00 Chrysene-d12,1 TIC: 0415F002.D 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 Phenanthrene-d10,1 T,enizettA Acenaphthene-d10,1 Biphenyl, T. T,2,4,5-Tetrachlorobenzene,T Caprolactam,T Naphthalene-d8,1 Acetophenone, T 9.00 1,4-Dichlorobenzene-d4,1 8.00 Benzaldehyde, T 7.00 6.00 5.00 A44009086 1000000 000006 200000 800000 000009 500000 400000 200000 100000 1500000 1400000 1100000 300000 1300000 1200000 Time-->

0412BNLL.M 0415F002.D

 \sim

Page

Organic Analysis: Semi-Volatile Organic Compounds by GC/MS

Validation Package

Sample Prep and Screen Data

Preparation Information

	***************************************	**************************************				
Group ID:	KWG0505755	Prep Method:	EPA 3541	Prep Date:	04/11/05 00:00	
Department:	MSP			·		
1						

Lab Code	Client ID	Product	Matrix	Amt. Ext.	Final Vol.	Solids
K2502499-008	T063-SPN-SB02-0-0.5 DUP	8270-LL	SOIL	40.03g	2ml	
K2502499-009	T063-SPN-SB02-4-5	8270-LL	SOIL	40.01g	2ml	
K2502499-010	T063-SPN-SB03-0-0.5	8270-LL	SOIL	40.06g	2ml	
K2502499-011	T063-R1-SB02-0-0.5	8270-LL	SOIL	40.07g	2ml	
K2502499-012	T063-R1-SB01-0-0.5DUP	8270-LL	SOIL	40.09g	2ml	
K2502554-001	TO63-IDW-01	8270-LL	SOIL	40.09g	2ml	
KWG0505755-1	Matrix Spike	8270-LL	SOIL	40.06g	2ml	
KWG0505755-2	Duplicate Matrix Spike	8270-LL	SOIL	4(),()4g	2ml	
KWG0505755-5	Lab Control Sample	8270-LL	SOIL	20.00g	2ml	
KWG0505755-6	Duplicate Lab Control Sampl	8270-LL	SOIL	20,00g	2m1	
KWG0505755-7	Method Blank	8270-LL	SOIL	40.09g	2ml	

Lab Code	Parent Lab Code	Comments	
KWG0505755-1	K2502499-011	svm19-15a 50ul	
KWG0505755-2	K2502499-011	svm19-15a 50ul	
KWG0505755-5		svm19-15a 50ul	
KWG0505755-6		svm19-15a 50ul	

		Surrogate	Amount Added	Spike	Amount Added	
Lab Code	Prep Event ID	Solution ID		Solution ID		Witness
K2502499-008	373953	SVMP3-63-B	50uL			GRoettge
K2502499-009	373954	SVMP3-63-B	50uL			GRoettge
K2502499-010	373955	SVMP3-63-B	50uL			GRoettge
K2502499-011	373956	SVMP3-63-B	50uL			GRoettge
K2502499-012	373957	SVMP3-63-B	50uL			GRoettge
K2502554-001	373958	SVMP3-63-B	50uL			GRoettge
₹WG0505755-1	373959	SVMP3-63-B	50uL	SVMP3-64B/64A	50uL	GRoettge
KWG0505755-2	373960	SVMP3-63-B	50uL	SVMP3-64B/64A	50uL	GRoettge
ζWG0505755-5	373963	SVMP3-63-B	50uL	SVMP3-64B/64A	50uL	GRoettge
KWG0505755-6	373964	SVMP3-63-B	50uL	SVMP3-64B/64A	50uL	GRoettge
KWG0505755-7	373965	SVMP3-63-B	50uL			GRoettge

Comments: IS-Sum 12	-69K		
Started By: EErickso	Assisted By:		<u>Training</u>
Completed By: KMiller	Assisted By:		Yes No
Reviewed By: EE	Date: 4-14-05	Storage: MS 10 Box	
Chain of Custody			
Relinquished By:		Date: 413 (5)	Extracts Examined
Received By:		Date: 4.15-5	Yek No
Printed: 04/12/2005 12:48:13	Preparation Information		Page 1 of 1

un Stealth\Crystal.rpt\prep1.rpt

Preparation Information

Group ID: Department:

KWG0505755

MSP

Prep Method:

EPA 3541

Prep Date:

04/11/05 00:00

#	Lab Code	Client ID	B#	٧	Product	Matrix	Amt. Ext.	рШ	Int. Vol.	Final Vol.	Surr. Added	Spike Added
1	K2502499-008	T063-SPN-SB02-0-0.5 DUP		V	8270-LL	SOIL	40.03		10mi	2ml	Sail	I NIC
2	K2502499-009	T063-SPN-SB02-4-5		V	8270-LL	SOIL	40.01					
.3	K2502499-010	T063-SPN-SB03-0-0.5		/	8270-LL	SOIL	40.06	and the second s		and a second		
4	K2502499-011	T063-R1-SB02-0-0.5		in second	8270-LL	SOIL	40.07	Annual An				
5	K2502499-012	T063-R1-SB01-0-0.5DUP		r/	8270-LL	SOIL	46.09			and and		
6	K2502554-001	TO63-[DW-0]		Ę.o-o-o	8270-LL	SOIL				PARTY THERE IS NOT THE REAL PROPERTY.	The second secon	
7	KWG0505755-1	Matrix Spike VJ499-11		4	8270-LL	SOIL	40.00					72.4
8	KWG0505755-2	Duplicate Matrix Spike		/	8270-LL	SOIL	40.04			Selection of the select		
()	KWG0505755-3	Duplicate Matrix Spike		Time .	8270-LL	SOIL	40.09			makangan di garan makan di dari Palanga Anga Kila Lan	esse, i. no ve distribution sistematico con a	The second secon
]()	KWG0505755-4		ike a valena avenue i		8270-L.L	SOIL				And the second control of the second of the	ation or delicate and page 100 for each Principles and	Security September destructions and electronic super
11	KWG0505755-5	Lab Control Sample			8270-LL	SOIL	20.00		Alarman and Alarma	2 ml		沙旱
12	KWG0505755-6	Duplicate Lab Control Sample			8270-LL	SOIL	2c.00				-	
13	KWG0505755-7	Method Blank			8270-LL	SOIL						

Comments:	
	£4/11/05
Surrogate ID: Simp3.63.B	5197-28-25 100/150 ppm & Dank
Spike ID: 850 NW3-U4-B EXP8 2	15/107-28-65 100/150/ppon & Dink 1405 50al /SUM03-UN-A CHEBIL/05/50ak/SUMFI-1517 CXP 7-21-05/50
Witness: Short Raftty	er 4/11/05
Started By: EErickşo	Assisted By:
Completed By: Kur	Assisted By:
Printed: 04/10/2005 09:00:39	Preparation Information Page 1 of 1

us\Stealth\Crystal.rpt\prep2.rpt

Preparation Information

Page 1 of 1

ABC GPC BENCHSHEET

Matrix: Tissue / Reg	. Soil / Low L	evel Soi	1 / Water / Oil
	,		
4-11-05			<i>y</i>
ore GPC:	10	(m1)	
ediate volume:	_10	(ml)	
	10	(ml)	
mn:		(ml)	
the Final Volume of		(ml)	
olume	_2		$\frac{(1) \times (3)}{(2) \times (4)} \times (5) = (6)$
I's need to be done?	YES	(NO)	>
extract tube 13. I d to the collection vessel I needed? 15. Is UST be) 16. E maining extract?	s the run log fille s sample load tin lowest volume? Is the nitrogen tan labels? s there enough ni Did you double cl	ed out? ne set com (VERY I nk valve o trogen (at heck your	rectly for extract with (MPORTANT) open? least 500lb/23 extracts)? GPC setup?
	Work Order: \$\(\(\frac{1250}{200} \) \(\frac{11-0}{200} \) Fore GPC: The Final Volume of the Final V	Work Order: \$\(\frac{12503554}{349}\) Ore GPC: dediate volume: the Final Volume of Olume 2 II. Is the By-pass va 12. Is the run log fille 13. Is sample load tim lowest volume? extract tube? 14. Is the nitrogen tand to the collection vessel labels? needed? 15. Is there enough ni 18T be) emaining extract? ndow 16. Did you double condow 17	ore GPC:

Additional Prep Information For EPA 354;

Service Request 2499-2554 Workgroup KW6-0505755
DCM Lot 45014 Hexane Lot M
Start (Time/Date/Initial): 1:0000 4-11-05 FE
Stop (Time/Date/Initial): チェッファハ リールの モ
Sulfate Lot # 44349501 S-Evap Temp 752 N-evap Temp 34° Silica gel Lot # M4
Solvent Exchange: NA
Clean-up #1: 4PC Initial/Date: 4-11-05 EE
Clean-up #2: Initial/Date:
Extract Storage: NA
Date Completed: 4-12-05 //m
Comments/Observations:
Bench Sheet Review Check List
Hold Times Met (if no, Reason:)
Prep date, dept, method, product code correct in stealth Spike Information correct
✓ Weights/Volumes and units correct on raw and final bench sheets
Sample IDs have been checked—Bottle numbers appended if required Names present for: Started by, Completed by, relinquished by, and witnessed by.
図 Training has been circled
ダ Extract Storage recorded ダ Additional Prep Sheet completely filled out (NA or line out Blanks)
් All clean-ups have been noted on additional prep sheet
□ Signed service request with Form V, if applicable, has been attached

Quantitation Report

Data File : J:\GC05\DATA\041205\0412F011.D

Acq On : 12 Apr 05 03:12 PM Sample : K2502554-001

Misc

Quant Time: Apr 13 12:59 19105

: J:\GC05\METHODS\BNASCRN.M Method : Methods 625/8270 screening. Title Last Update : Sat Feb 26 10:52:02 2005

Response via : Single Level Calibration

Volume Inj. : Signal Phase : Signal Info :

0412F011.D BNASCRN.M

Wed Apr 13 12:59:20 2005

Page 1

Vial: 11

Inst : GC05 Multiplr: 1.00

Operator: mthompson

Instrument RunLog

Instrument Type: MS

Instrument ID: Department: Analysis Lot:

MS10 SVM KWG0506208

FileSpecification	Type	Laboratory ID	Client ID	Product	Matrix	Dilution	Acquisition Started	Acquisition Ended	
J:\MS10\DATA\041505\0415F001.D	CCV	KWG0506208-2	Continuing Calibration	8270-LL	SOLID	1.0	04/15/2005 10:13:00	04/15/2005 10:42:59	::59
J:\MS10\DATA\041505\0415T001.D	TUNE	KWG0506208-1	GC/MS Tuning - Gen	8270-LL	SOLID	1.0	04/15/2005 10:13:00	10:13:00 04/15/2005 10:42:59	:59
J:\MS10\DATA\041505\0415F002.D	CCV	KWG0506208-2	Continuing Calibration	8270-LL	SOLID	1.0	04/15/2005 11:01:00	04/15/2005 11:30:59	1:59
J:\MS10\DATA\041505\0415F003.D	MB	KWG0505755-7	Method Blank	8270-LL	SOIL	1.0	04/15/2005 11:41:00	04/15/2005 12:10:59	1:59
J:\MS10\DATA\041505\0415F004.D	LCS	KWG0505755-5	Lab Control Sample	8270-LL	SOIL	1.0	04/15/2005 12:22:00	12:22:00 04/15/2005 12:51:59	:59
J:\MS10\DATA\041505\0415F005.D	DLCS	KWG0505755-6	Duplicate Lab Control (8270-LL	SOIL	1.0	04/15/2005 13:01:00	04/15/2005 13:31:00	:00
J:\MS10\DATA\041505\0415F006.D	SMPL	K2502554-001	T063-IDW-01	8270-LL	SOIL	1.0	04/15/2005 13:40:00	04/15/2005 14:09:59	1:59
J:\MS10\DATA\041505\0415F007.D	SMPL	K2502499-008	T063-SPN-SB02-0-0.5	8270-LL	SOIL	1.0	04/15/2005 14:20:00	04/15/2005 14:49:59	1:59
J:\MS10\DATA\041505\0415F008.D	SMPL	K2502499-009	T063-SPN-SB02-4-5	8270-LL	SOIL	1.0	04/15/2005 14:59:00	04/15/2005 15:28:59	:59
J:\MS10\DATA\041505\0415F009.D	SMPL	K2502499-010	T063-SPN-SB03-0-0.5	8270-LL	SOIL	1.0	04/15/2005 15:39:00	04/15/2005 16:08:59	1:59
J:\MS10\DATA\041505\0415F010.D	SMPL	K2502499-011	T063-R1-SB02-0-0.5	8270-LL	SOIL	1.0	04/15/2005 16:22:00	04/15/2005	16:52:00 338
J:\MS10\DATA\041505\0415F011.D	MS	KWG0505755-1	Matrix Spike	8270-LL	SOIL	1.0	04/15/2005 17:01:00	04/15/2005	1:59
J:\MS10\DATA\041505\0415F012.D	DMS	KWG0505755-2	Duplicate Matrix Spike	8270-LL	SOIL	1.0	04/15/2005 17:41:00	04/15/2005 18:10:59	1:59
J:\MS10\DATA\041505\0415F013.D	SMPL	K2502499-012	T063-R1-SB01-0-0.5 D	8270-LL	SOIL	1.0	04/15/2005 18:20:00	04/15/2005 18:49:59	1:59
J:\MS10\DATA\041505\0415F014.D	SMPL	K2501815-013	EAD-7005-SWAEQBL	8270-LL	WATER	1.0	04/15/2005 19:00:00	04/15/2005 19:29:59	1:59
J:\MS10\DATA\041505\0415F015.D	SMPL	K2501945-005	EAD-3023-IR1SED05-	8270-LL	SEDIME	10.0	04/15/2005 19:39:00	04/15/2005 20:09:00	00:
J:\MS10\DATA\041505\0415F016.D	SMPL	K2501945-006	EAD-3025-IR1SED07-	8270-LL	SEDIME	5.0	04/15/2005 20:18:00	04/15/2005 20:47:59	1:59
J:\MS10\DATA\041505\0415F017.D	SMPL	K2501945-007	EAD-3026-IR1SED08-	8270-LL	SEDIME	10.0	04/15/2005 20:58:00	04/15/2005 21:28:00	00:
J:\MS10\DATA\041505\0415F018.D	SMPL	K2501945-008	EAD-3027-IR1SED09-	8270-LL	SEDIME	10.0	04/15/2005 21:37:00	04/15/2005 22:06:59	:59
J:\MS10\DATA\041505\0415F019.D	SMPL	K2501945-009	EAD-3028-IR1SED10-	8270-LL	SEDIME	10.0	04/15/2005 22:16:00	04/15/2005 22:45:59	:59
J:\MS10\DATA\041505\0415F020.D	IB	KWG0506208-3	Instrument Blank	8270-LL	SOLID	10.0	04/15/2005 22:55:00	04/15/2005 23:24:59	.59
The second secon		APPENDIA MARINE							and the Contraction

u:\Stealth\Crystal.rpt\runlog1.rpt Printed: 04/18/2005 16:13:35

50/81/h . 1